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SUMMARY

Lalr is a parser generator that generates very fast and powerful parsers. The design goals have been to gen-
erate portable, table-driven parsers that are as efficient as possible and which include all the features needed
for practical applications. Like Yacc it accepts LALR(1) grammars, resolves ambiguities with precedence and
associativity of operators, generates table-driven parsers, and has a mechanism for S-attribution. Unlike
Yacc it allows grammars to be written in extended BNF, includes automatic error reporting, recovery, and
repair, and generates parsers in C or Modula-2. In case of LR-conflicts, a derivation tree is printed instead of
the involved states and items in order to aid the location of the problem. The parsers are two to three times
faster as those of Yacc. Using a MC 68020 processor, 35,000 tokens per second or 580,000 lines per minute
can be parsed. The sources of Lalr exist in C and in Modula-2. We describe in detail the development steps of
the generated parsers. We show how software engineering methods like pseudo code and stepwise refinement
can turn a parsing algorithm from a textbook into a complete and efficient implementation. We present the
details of the generated parsers and show how the performance is achieved with a relatively simple and short
program. We discuss important features of the generator and finally present a comparison of some parser
generators.

KEY WORDS syntactic analysis parser generator LALR(1) grammar

INTRODUCTION

The parser generator Lalr has been developed with the aim of combining a powerful specification technique
for context-free languages with the generation of highly efficient parsers. As the parser generator processes the class

of LALR(1) grammars, we chose the name Lalr to express the power of the specification technique.

The grammars may be written using extended BNF constructs. Each grammar rule may be associated with a
semantic action consisting of arbitrary statements written in the target language. Whenever a grammar rule is recog-
nized by the generated parser, the associated semantic action is executed. A mechanism for S-attribution (only syn-
thesized attributes) is provided to allow communication between the semantic actions.

In case of LR-conflicts a derivation tree is printed to aid the location of the problem. The conflict can be
resolved by specifying precedence and associativity for terminals and rules. Syntactic errors are handled fully
automatically by the generated parsers including error reporting, recovery, and repair. The mentioned features are

discussed in more detail in one of the following sections.

The generated parsers are table-driven. The comb-vector technique [ASU86] is used to compress the parse
tables. The sources of the generator Lalr exist in the languages C and Modula-2. Parsers can be generated in the
languages C and Modula-2, too. The generator uses the algorithm described by DeRemer and Pennello [DeP82] to

compute the look-ahead sets. Currently Lalr runs on several workstations under UNIX.

Parsers generated by Lalr are two to three times as fast as Yacc [Joh75] generated ones. They reach a speed of
35,000 tokens per second or 580,000 lines per minute on a MC 68020 processor, excluding the time for scanning.
The sizes of the parsers are 25 to 40% larger than those produced by Yacc (resulting in e. g. 37 KB for Ada). The

reason is mainly due to additional code for error recovery, as well as a small space penalty for the increase of speed.

Recently some researchers report that very fast LR parsers can be achieved by generating direct code, in
which the parse tables are converted into executable statements. Pennello [Pen86] generates assembly code and
reports that the resulting parsers run six to ten times faster than table-driven parsers generated by an unspecified
generator. He measured a speed of 500,000 lines per minute on a computer similar to a VAX 11/780 and 240,000

lines per minute on an Intel 80286. A disadvantage of this solution is the increase of the parser size by a factor of



two to four, mainly because a second parser is needed for error recovery.

Whitney and Horspool [HoW89, WhH88] generate C code and report the generation of parsers between five
and seven times faster than those produced by Yacc, resulting in a speed of 95,500 to 142,000 tokens per second or
700,000 to 2 million lines per minute for parsers for C and Pascal. The parser size lies in the same range of Yacc.
Currently, error recovery, S-attribution, and semantic actions are not provided. In the last section, we discuss the

problems with this kind of measurement and conclude that the results are not comparable.

Currently, table-driven parsers and direct code schemes are hard to compare. First, direct code schemes do
not as yet implement error recovery, S-attribution, or semantic actions. However, for realistic applications these
features are necessary and of course cost some time (see below). Second, the speed of the direct code schemes
decreases with the grammar size. We also made experiments with direct code parsers [KIM89] and found for exam-
ple in the case of Ada that an efficient table-driven parser was superior both in speed and space. A further problem
is that the code directly generated for large grammars may be too big to be translated under the restrictions of usual

compilers.

According to Almann [Ass88] a typical compiler spends 25% of the time for lexical analysis, 15% for syntac-
tic analysis, 35% for symbol table handling and semantic analysis, and 25% for code generation. In our own experi-
ments, syntactic analysis took 5 to 10% when all compiler parts were constructed as efficiently as possible. There-
fore, improving the speed of the syntactic analysis phase can reduce the total compilation time by only a few per-
cent. However, an engineer wants all the compiler parts to be as good as possible. An engineer also wants a parser
generator to have all the features needed for practical applications, such as error recovery, S-attribution, and seman-

tic actions.

From this engineering point of view we decided to follow the table-driven approach. This avoids the disad-
vantages of the direct code parsers like assembly code, large parsers, and trouble with compiler restrictions for big
programs. On the other hand, fast table-driven parsers can be generated, and can include error recovery,

S-attribution, and semantic actions with as few space and time expenses as possible.

This paper shows that a speed-up between two and three times faster than Yacc is possible using a
table-driven implementation programmed in C. With this approach, the code size increases only by 25 to 40%,
mainly because of added features like error recovery. The improvement is possible by carefully designing the
encoding of the parser actions, the details of the parsing algorithm, and the structure of the parse tables. In the fol-
lowing we will discuss the implementation of the generated parsers as well as some important features of the gen-

erator Lalr and present a comparison to other parser generators.

THE GENERATED PARSER

This section describes the parsers generated by Lalr. We develop the parsing algorithm step by step as given

below. We will use a pseudo code notation except in the last step where we introduce C code.

- basic LR-parsing algorithm

- LR(0) reductions

- encoding of the table entries

- semantic actions and S-attribution

- table representation and access

- eITor recovery

- mapping pseudo code to C

To be able to formally handle scanners, stacks, and grammars, we assume three modules. We only give the
headings of the exported procedures consisting out of the procedure name and the types of the parameters and

results.



MODULE scanner
PROCEDURE GetToken () : Vocabulary
PROCEDURE GetAttribute (): <any type>

Each call of the function GetToken yields the next token of the input. If the input is read completely, GetToken
yields the special value EndOfInput. A call of the function GetAttribute returns the attributes of the current token,
such as symbol tables indices for identifiers or values of numbers.

MODULE stack

PROCEDURE Push (Stack, Element)
PROCEDURE Pop (Stack) : Element
PROCEDURE Top (Stack) : Element

A stack is defined as usual.

MODULE grammar

PROCEDURE Length (Productions): Integer
PROCEDURE LeftHandSide (Productions): Nonterminals
PROCEDURE Semantics (Productions): <action statements>

The function Length returns the length of the right-hand side of a production. The function LeftHandSide returns the
nonterminal on the left-hand side of a production. The function Semantics maps every production to some action

statements. These statements should be executed whenever the associated production is recognized or reduced.

Basic LR-Parsing Algorithm

We start by looking in a textbook on compiler construction [ASU86, WaG84]. (Following [DeP82] we use
the notion read action for what is usually called shift action.) An LR-Parser is controlled by a parse table imple-

menting the following function
Table : States X Vocabulary — Actions
where

Actions = ( read X States ) [I ( reduce x Productions ) (I { halt, error }

Algorithm 1: Basic LR parser

BEGIN
Push (StateStack, StartState)
Terminal := GetToken ()
LOOP

CASE Table (Top (StateStack), Terminal) OF

read t: Push (StateStack, t)
Terminal := GetToken ()
reduce p: FOR i1 := 1 TO Length (p) DO
State := Pop (StateStack)
END
Nonterminal := LeftHandSide (p)

CASE Table (Top (StateStack), Nonterminal) OF
read t: Push (StateStack, t)

END
error: ErrorRecovery ()
halt: EXIT
END
END

END



The table controls a general LR parsing algorithm (Algorithm 1). This is a pushdown automaton which
remembers the parsing of the left context in a stack of states. Depending on the state on top of the stack and on the

actual look-ahead symbol, it accesses the parse table and executes the obtained action.

There are two places where the table is accessed. Depending on the second argument of the function Table,
we will call these places terminal and nonterminal accesses. At a terminal access, all four actions are possible.
Nonterminals appear after reductions, only a read action is possible at a nonterminal access: no error action can
occur. Nevertheless we use a CASE statement at a nonterminal access to decode the action, because there will be
more cases in the next step.

LR(0) Reductions

The textbooks also tell us about LR(0) reductions or read-reduce actions [WaG84]. For most languages 50%
of the states are LR(0) reduce states, in which a reduce action is determined without examining the look-ahead
token. The introduction of a read-reduce action is probably one of the best available optimizations. This saves

many table accesses and considerable table space.
Actions = ( read X States ) [I ( reduce x Productions ) [I ( read-reduce % Productions ) (I { halt, error }
As we did not find an LR parsing algorithm that uses read-reduce actions in the literature we present our ver-
sion in Algorithm 2. The character ’_’ stands for a value that doesn’t matter. A read-reduce action can occur at both

places of table access. In the terminal case, we combine a read and a reduce action. In the nonterminal case we have

to "virtually" read the nonterminal and then to execute a reduction. This is accomplished by the inner LOOP

Algorithm 2: LR parser with LR(0) reductions

BEGIN
Push (StateStack, StartState)
Terminal := GetToken ()
LOOP

CASE Table (Top (StateStack), Terminal) OF

read t: Push (StateStack, t)
Terminal := GetToken ()

read-reduce p: Push (StateStack, _)
Terminal := GetToken ()
GOTO L

reduce p: L: LOOP

FOR i := 1 TO Length (p) DO
State := Pop (StateStack)

END

Nonterminal := LeftHandSide (p)

CASE Table (Top (StateStack), Nonterminal) OF

read t: Push (StateStack, t)
EXIT

read-reduce p: Push (StateStack, _)

END
END
error: ErrorRecovery ()
halt: EXIT
END
END

END



statement. A reduce action can be followed by a series of read-reduce actions. The inner LOOP statement is ter-

minated on reaching a read action.

This solution with an inner LOOP statement has two advantages: First, as there are only two cases within the
second CASE statement, it can be turned into an IF statement. Second, there is no need to differentiate between read
and read-reduce with respect to terminal or nonterminal table access, as these different kinds of access occur at two

different places.

Encoding of the Table Entries

The next problem is how to efficiently represent the table entries. Conceptually, these entries are pairs con-
sisting of an action indicator and a number denoting a state or a production. A straightforward representation using a
record wastes too much space and is too hard to decode for interpretation. It is advantageous to represent the table

entries by simple integers in the following way:

Table : States X Vocabulary — INTEGER

where
action integer value constant name
error 0 NoState
read 1 1
read n n
read-reduce 1 n+1 FirstReadReduce

read-reducem n+m

reduce 1 n+m+1 FirstReduce
reduce m n+m+m
halt n+m+m+1  Stop

The constant n stands for the number of states and the constant m for the number of productions. As it is not
possible to "read-reduce” every production, not all numbers between n+1 and n+m are used. The advantage of this
solution is that the table entries do not take much space, and that to decode them the CASE statements can be turned
into three simple comparisons as shown in Algorithm 3. We neglect the actions error and halt for the moment, and

reintroduce them in later sections.

Semantic Actions and S-Attribution

For the implementation of an S-attribution which is evaluated during LR parsing, the parser has to maintain a
second stack for the attribute values. This stack grows and shrinks in parallel with the existing stack for the states.

Algorithm 4 shows how these features have to be added.

In order to be able to access the attributes of all right-hand side symbols, we need a stack with direct access,
because the attribute for the i-th symbol (counting from 1) has to be accessed by

AttributeStack [StackPointer + i]

The action statement can compute an attribute value for the left-hand side of the production which has to be
assigned to the variable SynAttribute (for a synthesized attribute). After executing the action statements, this value
is pushed onto the attribute stack by the parser to reestablish the invariant of the algorithm. The attribute values for

terminals have to be provided by the scanner.



Algorithm 3: LR parser with actions encoded by integers

BEGIN
Push (StateStack, StartState)
Terminal := GetToken ()
LOOP
State := Table (Top (StateStack), Terminal)
IF State >= FirstReadReduce THEN /* reduce or read-reduce? */
IF State < FirstReduce THEN /* read-reduce */
Push (StateStack, _)
Terminal := GetToken ()
Production := State - FirstReadReduce + 1
ELSE /* reduce */
Production := State - FirstReduce + 1
END
LOOP /* reduce */
FOR i := 1 TO Length (Production) DO
State := Pop (StateStack)
END
Nonterminal := LeftHandSide (Production)
State := Table (Top (StateStack), Nonterminal)
IF State < FirstReadReduce THEN /* read */
Push (StateStack, State)
EXIT
ELSE /* read-reduce */
Push (StateStack, _)
END
END
ELSE /* read */
Push (StateStack, State)
Terminal := GetToken ()
END
END

END



Algorithm 4: LR parser with action statements and S-attribution

BEGIN
Push (AttributeStack, _)
Push (StateStack, StartState)

Terminal := GetToken ()
LOOP
State := Table (Top (StateStack), Terminal)
IF State >= FirstReadReduce THEN /* reduce or read-reduce? */
IF State < FirstReduce THEN /* read-reduce */

Push (AttributeStack, GetAttribute ())
Push (StateStack, _)

Terminal := GetToken ()
Production := State - FirstReadReduce + 1
ELSE /* reduce */
Production := State - FirstReduce + 1
END
LOOP /* reduce */
FOR i := 1 TO Length (Production) DO
Dummy := Pop (AttributeStack)
State := Pop (StateStack)
END
Nonterminal := LeftHandSide (Production)

Semantics (Production) ()
State := Table (Top (StateStack), Nonterminal)

IF State < FirstReadReduce THEN /* read */
Push (AttributeStack, SynAttribute)
Push (StateStack, State)
EXIT

ELSE /* read-reduce */
Push (AttributeStack, SynAttribute)
Push (StateStack, _)

END

END

ELSE /* read */
Push (AttributeStack, GetAttribute ())
Push (StateStack, State)
Terminal := GetToken ()
END
END
END

As many of the terminals don’t bear any attribute, most of the associated Push operations could be replaced
by pushing a dummy value: that is, an increment of the stack pointer would be enough. To be able to distinguish
between two kinds of Push operations, two kinds of read actions would be necessary. To make the decision would
cost an extra check for every token. We did not use this optimization because we believe that the extra checks cost

as much as the saved assignments.

How do we implement the mapping of a production to the associated action statements? Of course, the natural
solution is a CASE statement. The access to the Length and the LeftHandSide also depends on the production. One
choice would be to access two arrays. As array access is relatively expensive, we can move these computations into
the CASE statement which we already need for the action statements. In each case, these computations are turned
into constants. The FOR loop disappears anyway, because it suffices to decrement the stack pointers. The code com-
mon to all reductions is not included in the CASE statement but follows afterwards. We also factor out the code

common to all parts of the IF statement at the end of each reduction (Algorithm 5).

Parts of the code in the case alternatives can be evaluated during generation time. In Algorithm 5, p and q

stand for arbitrary productions. Whereas in the case of p the code has just been carried over from Algorithm 4, the



Algorithm 5: LR parser with CASE statement

BEGIN
Push (AttributeStack, _)
Push (StateStack, StartState)

Terminal := GetToken ()
LOOP
State := Table (Top (StateStack), Terminal)
IF State >= FirstReadReduce THEN /* reduce or read-reduce? */
IF State < FirstReduce THEN /* read-reduce */

Push (AttributeStack, GetAttribute ())
Push (StateStack, _)
Terminal := GetToken ()

END

LOOP /* reduce */
CASE State OF

Stop: HALT

ptFirstReadReduce-1, p+FirstReduce-1:

FOR i := 1 TO Length (p) DO
Dummy := Pop (AttributeStack)
State := Pop (StateStack)

END

Nonterminal := LeftHandSide (p)

Semantics (p) ()

gtFirstReadReduce-1, g+FirstReduce-1:

AttributeStackPointer —-:=m

StateStackPointer —:=m

Nonterminal = n

<action statements for g> /* Semantics (q) */
END
State := Table (Top (StateStack), Nonterminal)

Push (AttributeStack, SynAttribute)
Push (StateStack, State)

IF State < FirstReadReduce THEN EXIT END /* read */
END

ELSE /* read */
Push (AttributeStack, GetAttribute ())
Push (StateStack, State)
Terminal := GetToken ()
END
END
END

case of q contains the code after applying constant folding: the FOR loop reduces to a decrement of the stack
pointers and the precomputation of the left-hand side of q yields a constant:

m = Length (q)

n = LeftHandSide (q)

The two stacks could use one common stack pointer if this were an array index. As we want to arrive at real
pointers in a C implementation, we have to distinguish between the two stack pointers.

The halt action (Stop) can be treated as a special case of a reduction. It occurs when the production S* — S #

is recognized. We have augmented the given grammar by this production where



S is the original start symbol
S’ is the new start symbol
# is the end of input token

By this we assure that the complete input is parsed and checked for syntactical correctness.

Table Representation and Access

After developing the principle algorithm for LR-parsing, the question of how to implement the function Table
has to be discussed before we turn to the details of the implementation. The most natural solution might be to use a

two-dimensional array. For large languages like Ada this array would become quite big:
(95 terminals + 252 nonterminals ) * 540 states * 2 bytes = 374,760 bytes

This amount may be bearable with todays main memory capacities. However, we have chosen the classical solution
of compressing the sparse matrix. Using this compression the storage required for the Ada parser is reduced to
22,584 bytes, including additional information for error recovery. The decision of how to compress the table has to

take into account the desired storage reduction and the cost of accessing the compressed data structure.

An advantageous compression method is the comb-vector technique described in [ASU86] which is used for
example in Yacc [Joh75] and in the latest version of PGS [KIM89]. This technique combines very good compres-
sion quality with fast access. The rows (or columns) of a sparse matrix are merged into a single vector called Next.
Two additional vectors called Base and Check are necessary to accomplish the access to the original data. Base con-
tains for every row (column) the offset where it starts in Next. Check contains for every entry in Next the original
row (column) index. The resulting data structure resembles the merging of several combs into one. The optional
combination with a fourth array called Default allows further compression of the array, as parts common to more
than one row (column) can be factored out. Algorithm 6 shows how to access the compressed data structure if rows

are merged. For more details see [ASU86].
Algorithm 6: access to the compressed table (comb-vector)

PROCEDURE Table (State, Symbol)

LOOP
IF Check [Base [State] + Symbol] = State THEN
RETURN Next [Base [State] + Symbol]
ELSE
State := Default [State]
IF State = NoState THEN RETURN error END
END
END
END

With this kind of compression it is possible to reduce the table size to less than 10%. The space and time
behaviour can be improved even more, yielding in the case of Ada a size reduction of 6%. Algorithm 6 may return
the value "error". However, if Symbol is a nonterminal, no errors can occur, as nonterminals are computed during
reductions and are always correct. Therefore, in the case of nonterminal access, if Default is omitted the vector
Check can be omitted, too. In order to implement this it is necessary to split the function Table in two parts, one for

terminal and one for nonterminal access:

TTable : States X Terminals - INTEGER
NTTable : States X Nonterminals - INTEGER

The terminal Table TTable is accessed as before using Algorithm 6. The access to the nonterminal Table

NTTable can be simplified as shown in Algorithm 7. Only the vectors NTNext and NTBase are necessary in this
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case.
Algorithm 7: access to the nonterminal table

PROCEDURE NTTable (State, Symbol)
RETURN NTNext [NTBase [State] + Symbol]
END

Splitting the table into two parts has several advantages: the storage reduction is improved because the two
parts pack better if handled independently. The storage reduction by omitting Default and Check is greater than

using these two vectors. The table access time in the nonterminal case is improved significantly.

A further possibility to reduce space is to make the arrays Next and Check only as large as the significant
entries require. Then a check has to be inserted to see if the expression *Base [State] + Symbol’ is within the array

bounds. We decided to save this check by increasing the arrays to a size where no bounds violations can occur.

Error Recovery

The error recovery of Lalr follows the complete backtrack-free method described by [R6h76, R6h80, R6h82].
The error recovery used by Lalr is completely automatic and includes error reporting, recovery, and repair. From

the user’s point of view it works as described in a later section.

There is only one place where an error can occur: in an access to the terminal table where the lookahead
token is not a legal continuation of the program recognized so far. The algorithm for error recovery replaces in the
access of the terminal table (Algorithm 6) the return of the value "error". The parsing algorithm has two modes: the
regular mode and the repair mode used during error repair. A problem is that during repair mode reductions and the
associated semantic actions have to be executed. To avoid duplication of this code we use the same code during
both modes. In order to avoid the immediate generation of new errors in repair mode error messages and skipping of
tokens are disabled in this mode. Repair mode is exited when we can accept a token at one of the two places where

tokens are read. We add an instruction at these places to leave repair mode.

It might be argued that this additional instruction to leave repair mode could be avoided. This is true, if either
the code for reductions and semantic actions were duplicated or turned into a procedure which could be called
twice. The first solution would increase the code size significantly. This is avoided in the second solution, but we
have to pay for a procedure call at every reduction. This is more expensive than a simple assignment to change the
mode for every input token, because the number of input tokens is usually about the same as the number of reduc-

tions.

Mapping Pseudo Code to C

The remaining implementation decisions are how to map the pseudo code instructions into real programming
language statements. This concerns primarily the operations Push and Top and the table access. The following

arguments hold only for the language C, as things are different in Modula-2.

The communication of the attribute value of a token from the scanner is not done by the procedure GetAttri-
bute but by the global variable Attribute.

Stacks are implemented as arrays which are administered by a stack pointer. If the stack pointer is a register
variable a Push operation could be accomplished by one machine instruction on an appropriate machine if auto
increment is used. We preferred post increment, because we use a MC 68020 processor.

Push (AttributeStack, Attribute) O * yyAttrStackPtr ++ = Attribute;
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The operation Top turns into dereferencing a pointer.

Top (StateStack) O * yyStateStackPtr

A dummy value is easily pushed by an increment instruction.
Push (StateStack, _) 0 yyStateStackPtr ++;

The vector NTBase does not contain integer values but direct pointers into the vector NTNext to indicate
where the rows start in NTNext. These pointers are initialized after loading of the program. This saves the addition
of the start address of NTNext during the outer array access. The start address is already preadded to the elements
of the vector NTBase. This kind of access is probably cheaper than the access to an uncompressed two-dimensional
array which usually involves multiplication. The same technique is applied to the vector Base of the terminal table.

State := NTNext [NTBase [Top (StateStack ())] + Symbol] 0
yyState = * (yyNTBasePtr [* yyStateStackPtr] + yyNonterminal);

The terminal table access is handled as follows. Instead of implementing the vectors Next and Check as
separate arrays, we used one array of records. The array is called Comb and the records have two fields called
Check and Next. This transformation saves one array access, because whenever we have computed the address of
the Check field we find the Next field besides it.

LOOP
IF Check [Base [State] + Symbol] = State THEN
RETURN Next [Base [State] + Symbol]
ELSE
State := Default [State]
IF State = NoState THEN <error recovery> END
END
END

0
for (;;) |

typedef struct { int Check, Next; } yyTCombType;
register yyTCombType * TCombPtr;

TCombPtr = yyTBasePtr [yyState] + yyTerminal;

if (TCombPtr->Check == yyState) {
yyState = TCombPtr->Next;
break;
bi
if ((yyState = yyDefault [yyState]) != yyNoState) continue;

< code for error recovery >

To check for stack overflow we have to add the code below at every read (terminal) action. Read-reduce and
reduce actions can only cause the stacks to grow by at most one element and therefore don’t need an overflow
check. We have implemented the stacks as flexible arrays. In case of stack overflow the sizes of the arrays are
increased automatically. Therefore from the users point of view stack overflow never occurs.

if (yyStateStackPtr >= yyMaxPtr) < allocate larger arrays and copy the contents >

Of course we have used the register attribute for the most used variables:

yyState, yyTerminal, yyNonterminal, yyStateStackPtr, yyAttrStackPtr, TCombPtr

The variables yyTerminal and yyNonterminal have the type long because they are involved in address com-
putations. These have to be performed with long arithmetic in C. The long declaration saves explicit machine
instructions for length conversions (at least on MC 68020 processors). The variable yyState has the type short in
order to be compatible with the type of the table elements. These have the type short to keep the table size rea-
sonable small.
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Continue statements have been changed to explicit gotos, because some compilers don’t generate optimal

jump instructions.

The appendix shows an example of a parser generated by Lalr. The error recovery, which constitutes most of
the code, and some other parts have been omitted. Some details may deviate from the above description which con-
centrated primarily on the principles. For example all identifiers carry the prefix 'yy’ to avoid conflicts with
identifiers introduced by the user into the semantic actions. Also, the sizes of the arrays are greater than really

necessary as we used a non-dense coding for the terminal symbols.

THE PARSER GENERATOR

This chapter will discuss important features of the generator Lalr from the user’s point of view.

Structure of Specification

The structure of a parser specification is shown in Figure 1. There may be five sections to include arbitrary
target code, which may contain declarations to be used in the semantic actions or statements for initialization and
finalization of data structures. The TOKEN section defines the terminals of the grammar and their encoding. In the
OPER (for operator) section, precedence and associativity for terminals can be specified to resolve LR-conflicts.
The RULE section contains the grammar rules and semantic actions. A complete definition of the specification
language can be found in the user manual [GrV88].

EXPORT { external declarations

}
GLOBAL { global declarations }
LOCAL { local declarations }
}
}

BEGIN { initialization code

CLOSE { finalization code

TOKEN coding of terminals

OPER precedence of operators

RULE grammar rules and semantic actions

Fig. 1: Structure of Specification

Semantic Actions and S-Attribution

A parser for practical applications has more to do than just syntax checking: it must allow some kind of trans-
lation of the recognized input. In the case of LR parsing, action statements can be associated with the productions.

These statements are executed whenever the production is reduced.

Additionally, during LR parsing it is possible to evaluate an S-attribution (only synthesized attributes). This
mechanism works as follows: every terminal or nonterminal of the grammar can be associated with an attribute.
After a reduction (that is during the execution of the action statements) the attributes of the symbols on the
right-hand side of the reduced production can be accessed from an attribute stack using the notation $i. The action
statement can compute an attribute value for the left-hand side of the production which has to be assigned to the
special variable $$. After executing the action statements, this value is pushed onto the attribute stack by the parser
to reestablish the invariant of the algorithm. The attribute values for terminals have to be provided by the scanner.

Figure 2 shows an example for the syntax of grammar rules, semantic actions, and S-attribution.



expr :
expr :
expr :
expr :

Fig. 2: Grammar Rules with Semantic Actions and S-Attribution

expr '+’ expr { $S$.value := S$l.value + $3.value;
expr '*’ expr { S$$.

" exprl)l {

number

Ambiguous Grammars

{

value := $l.value * $3.value;
$$.value := $2.value;
$$.value := $l.value;

}
}

}
}
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The grammar of Figure 2 as well as the example in Figure 3 are typical examples of ambiguous grammars.

Like Yacc we allow resulting LR-conflicts to be resolved by specifying precedence and associativity for terminals in

the OPER section. Figure 4 gives an example. The lines represent increasing levels of precedence. LEFT, RIGHT,

and NONE denote left-associativity, right-associativity, and no associativity. Rules can inherit the properties of a
terminal with the PREC suffix.

stmt

IF expr THEN stmt
| IF expr THEN stmt ELSE stmt

Fig. 3: Ambiguous Grammar (Dangling Else)

OPER

Fig. 4: Resolution of LR-Conflicts Using Precedence and Associativity

LEFT '+’
LEFT " *’
NONE LOW
NONE HIGH

LR-Conflict Message

PREC LOW
PREC HIGH .

To help a user locate the reason for LR-conflicts, we adopted the method proposed by [DeP82]. Besides

reporting the type of the conflict and the involved items (whatever that is for the user) like most LR parser genera-

tors do, the system also prints a derivation tree. Figure 5 shows an example. It shows how the items and the

look-ahead tokens get into the conflict situation. In general there can be two trees if the derivations for the

conflicting items are different. Each tree consists of three parts. An initial part begins at the start symbol of the

grammar. At a certain node (rule) two subtrees explain the emergence of the item and the look-ahead.

State 266

read reduce conflict

program End-of-Tokens
PROGRAM identifier params ’;’ block ’.’

stmt

IF expr THEN stmt

IF

reduce stmt -> IF

read

Fig. 5: Derivation Tree for an LR-Conflict (Dangling Else)

stmt -> IF

ELSE

expr

expr
expr

stmt

THEN stmt

THEN stmt. {ELSE} ?
THEN stmt.ELSE stmt ?
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Every line contains a right-hand side of a grammar rule. Usually the right-hand side is indented to start below
the nonterminal of the left-hand side. To avoid line overflow, dotted edges also refer to the left-hand side nontermi-
nal and allow a shift back to the left margin. In Figure 5 the initial tree part consists of 5 lines (not counting the dot-
ted lines). The symbols stmt and ELSE are the roots of the other two tree parts. This location is indicated by the
"unnecessary” colon in the following line. After one intermediate line the left subtree derives the conflicting items.
The right subtree consists in this case only of the root node (the terminal ELSE) indicating the look-ahead. In gen-
eral this can be a tree of arbitrary size. The LR-conflict can easily be seen from this tree fragment. If conditional

statements are nested as shown, then there is a read reduce conflict (also called shift reduce conflict).

Error Recovery

The generated parsers include information and algorithms to handle syntax errors completely automatically.
We follow the complete backtrack-free method described by [R6h76, R6h80, R6h82] and provide expressive report-
ing, recovery, and repair. Every incorrect input is "virtually" transformed into a syntactically correct program with
the consequence of only executing a "correct” sequence of semantic actions. Therefore the following compiler
phases like semantic analysis don’t have to bother with syntax errors. Lalr provides a prototype error module which
prints messages as shown in Figure 6. Internally the error recovery works as follows:

- The location of the syntax error is reported.
- All the tokens that would be a legal continuation of the program are computed and reported.

- All the tokens that can serve to continue parsing are computed. A minimal sequence of tokens is skipped until
one of these tokens is found.

- The recovery location is reported.

- Parsing continues in the so-called repair mode. In this mode the parser behaves as usual except that no tokens
are read from the input. Instead a minimal sequence of tokens is synthesized to repair the error. The parser stays
in this mode until the input token can be accepted. The synthesized tokens are reported. The program can be
regarded as repaired, if the skipped tokens are replaced by the synthesized ones. Upon leaving repair mode,

parsing continues as usual.

Source Program:

program test (output);
begin

if (a = b] write (a);
end.

Error Messages:

3, 13: Error syntax error

3, 13: Information expected symbols: ")/ 7*/ r4/ 11 rrl Tl Tt TS
’>’ ’>=’ AND DIV IN MOD OR

3, 15: Information restart point

3, 15: Repair symbol inserted : ")’

3, 15: Repair symbol inserted : THEN

Fig. 6: Example of Automatic Error Messages



comparing the features of the generators and the performance of the generated parsers. Tables 1 to 4 contain the

Finally we present a comparison of Lalr with some other parser generators that we have access to. We are

COMPARISON OF PARSER GENERATORS

results and should be self explanatory. Besides Lalr we examine:

BNF. The tools Lalr, PGS, Yacc, and Bison process the large class of LALR(1) grammars but can only evaluate an

S-attribution during parsing. EIl on the other hand processes the smaller class of LL(1) grammars but generates

Yacc well known from UNIX [Joh75]

Bison public domain remake of Yacc [GNUS88]
PGS

Ell

Lalr, PGS, and EIll accept grammars written in extended BNF whereas Yacc and Bison require grammars in

recursive descent parser generator described in [Gro88].

Parser Generating System also developed at Karlsruhe [GrK86, KIM89]

Table 1: Comparison of Specification Techniques for Parser Generators

Bison Yacc PGS Lalr Ell
specification language | BNF BNF EBNF EBNF EBNF
grammar class LALR(1) LALR(1) LALR(1) LALR(1) LL(1)

LR(1)

SLR(1)
semantic actions yes yes yes yes yes
S-attribution numeric numeric symbolic  numeric -
L-attribution - - - - symbolic

parsers which are 50% faster (see below) and can evaluate a more powerful L-attribution during parsing.

solution of this kind of problems. The tools Lalr, PGS, and Ell provide automatic error recovery and repair in case

Table 2: Features for Grammar Conflicts and Error Recovery

Bison Yacc PGS Lalr Ell

conflict message state, state, state, derivation- involved
items items items tree productions

conflict solution precedence precedence precedence precedence first rule

associativity ~ associativity ~ associativity = associativity

modification

chain rule elimination | - - yes - -
error recovery by hand by hand automatic automatic automatic
error repair - - yes yes yes

In case of grammar conflicts, Lalr has the advantage of providing derivation trees to support the location and

of syntax errors.
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Table 3: Comparison of Implementation Techniques and Languages

Bison Yacc PGS Lalr Ell
parsing method table-driven  table-driven  table-driven  table-driven  recursive
descent
table compression comb-vector comb-vector comb-vector  comb-vector -
implementation languages | C C Pascal C C
Modula Modula
target languages C C C C C
Modula Modula Modula
Pascal
Ada

All the LALR(1) tools generate table-driven parsers and use the comb-vector technique for table compression.
Ell produces directly coded recursive descent parsers. Whereas Yacc and Bison are implemented in C and generate
C code, the sources of Lalr and Ell exist in Modula-2 and in C and the tools generate Modula-2 as well as C. PGS is

implemented in Pascal and generates parsers in even more languages.

The parser measurements (Table 4) exclude time and size for scanning and refer to experiments with
Modula-2 parsers. The grammar for the LALR(1) tools had 69 terminals, 52 nonterminals, and 163 productions.
The grammar for Ell was in extended BNF and contained 69 terminals, 45 nonterminals, and 91 productions. The
timings result from analyzing a big Modula-2 program containing 28,302 tokens, 7867 lines, or 193,862 characters
with the generated parsers. For this input the parser generated from Lalr executed 13,827 read, 14,476
read-terminal-reduce, 11,422 read-nonterminal-reduce, and 18,056 reduce actions. The terminal Table TTable was
accessed 46,358 times and the nonterminal Table NTTable 43,953 times.

Table 4: Comparison of Parser Speeds and Sizes

Bison Yacc PGS Lalr Ell
speed [103 tokens/sec.] 8.93 15.94 17.32 34.94 54.64
speed [103 lines/min.] 150 270 290 580 910
table size [bytes] 7,724 9,968 9,832 9,620 -
parser size [bytes] 10,900 12,200 14,140 16,492 18,048
generation time [sec.] 4.92 17.28 51.04 27.46 10.48

In the presented experiment Lalr generated parsers are twice as fast as those of Yacc. In general, we observed
speed-ups between two and three depending on the grammar. The sizes of the parse tables are nearly the same in all
cases. The parser generated by Lalr is 35% larger then the Yacc parser, mainly because of the code for error
recovery. The generation times vary widely. The reasons can be found in the different algorithms for computing the
look-ahead sets and the quality of the implementation. Lalr spends a considerable amount of time in printing the
derivation trees for LR-conflicts. PGS generated parsers turned out to be faster in comparison to Yacc, but Bison
performed considerably slower. Parsers generated by Ell were found to be the fastest exceeding the speed of Lalr by
50%.
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The measurements of the parser speed turned out to be a hairy business. The results can be influenced in

many ways from:

- The hardware: we used a PCS Cadmus 9900 with a MC68020 processor running at a clock rate of 16.7 MHz.
- The loader: our timings include the time to load the parser which is almost zero.

- The compiler: we used the C compiler of PCS.

- The language: we used Modula-2.

- The size of the language: in the case of Lalr the size of the language or the size of the grammar does not
influence the speed of the parser because the same table-driven algorithm and the same data structure is used in
every case. This can be different for other parsers. For example the speed of directly coded parsers decreases
with the grammar size. One reason is that linear or binary-tree search is done to determine the next action.
Another reason can be that long jump instructions become necessary instead of short ones. PGS stores states in
one byte if there are less than 256 states and in two bytes otherwise. This decreases the speed for large gram-

mars, too, at least on byte-addressable machines.

- The grammar style, the number of rules, especially chain rules and the like: we used the same grammar except
for Ell which had as few chain rules as possible and which caused as few reduce actions as possible. This means

e. g. we specified expressions in an ambiguous style like shown in Figure 2.

- The test input: we used the same large Modula program as test data in every case, of course. Nevertheless the

programming style or the code "density" influence the resulting speed when it is measured in lines per minute.

- The timing: we measured CPU-time and subtracted the scanner time from the total time (scanner and parser) to

get the parser time. We used the UNIX shell command time to get the time and added user and system time.

- The measure: we selected tokens per second as well as lines per minute as measures. The first one is independent
of the density of the input and therefore more exact. The second one has been used by other authors and it is

more expressive for a user.

- The semantic actions: we specified empty semantic actions for all rules in order to simulate the conditions in a
realistic application. This has more consequences than one might think. It disables a short cut of Yacc and the

chain rule elimination [WaG84] of PGS, decreasing the speed in both cases.

Our conclusion from the numerous problems with the measurement of parser speed is that results from dif-
ferent environments or from different people can not be compared. There are too many conditions that influence the

results and usually only a few of these conditions are reported.

CONCLUSION

We showed that table-driven, portable LR(1) parsers can be implemented efficiently in C or similar
languages. Following the presented ideas the parser generator Lalr generates parsers that are two to three times fas-
ter than parsers generated by Yacc. They are vary fast and reach a speed of 35,000 tokens per second or 580,000
lines per minute. The generated parsers have all the features needed for practical applications such as semantic

actions, S-attribution, and error recovery.

We have shown how to develop an efficient parsing algorithm in a systematic way. The starting point was a
basic algorithm from a textbook. In a stepwise manner we turned it into a relatively short yet efficient algorithm

mainly using pseudo code. Target code was introduced only in the last step.

We presented the main features of the parser generator Lalr from the user’s point of view. A valuable feature

of Lalr is that it prints a derivation tree in case of LR-conflicts to aid the location of the problem. We finally
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compared the features and performance of some parser generators.
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APPENDIX

Example of a Generated Parser

Grammar:
L : Ls
s 2 ir = E .
E : E '+ E
| E’-" E
| E 7% E
| E’/" E
"i'
‘lnl
‘ r(rE ).
Parser:
# include "DynArray.h"
# define yyInitStackSize 100
# define yyNoState 0
# define yyTableMax 122
# define yyNTableMax 119
# define yyLastReadState 13
# define yyFirstReadReduce 14
# define yyFirstReduce 20
# define yyStartState 1
# define yyStopState 20

typedef short yyStateRange;
typedef struct { yyStateRange Check, Next; } yyTCombType;
typedef struct { tScanAttribute Scan; } tParsAttribute;

static yyTCombType * yyTBasePtr
static vyyStateRange * yyNBasePtr

[yyLastReadState + 1];
[yyLastReadState + 11];

static yyStateRange yyDefault [yyLastReadState + 1];
static yyTCombType yyTComb [yyTableMax + 1];
static yyStateRange yyNComb [yyNTableMax + 11];
static int yyErrorCount;
int Parse ()
{

register yyStateRange yyState ;

register long yyTerminal ;

register yyStateRange * yyStateStackPtr ;
register tParsAttribute * yyAttrStackPtr ;
register bool yyIsRepairing ;
unsigned long yyStateStackSize = yyInitStackSize;

unsigned long yyAttrStackSize = yyInitStackSize;
yyStateRange * yyStateStack ;
tParsAttribute yyAttributeStack;
tParsAttribute yySynAttribute ; /* synthesized attribute */
yyStateRange * yyMaxPtr;
yyState = yyStartState;
yyTerminal = GetToken ();
MakeArray (& yyStateStack, & yyStateStackSize, sizeof (yyStateRange));
MakeArray (& yyAttributeStack, & yyAttrStackSize, sizeof (tParsAttribute));
yyMaxPtr = & yyStateStack [yyStateStackSize];
yyStateStackPtr = yyStateStack;
yyAttrStackPtr = & yyAttributeStack [1];
yyErrorCount = 0;
yyIsRepairing = false;
Parseloop:
for (;;) |

if (yyStateStackPtr >= yyMaxPtr) {

int StateStackPtr

/* stack overflow? */
= yyStateStackPtr - yyStateStack;

19



int AttrStackPtr

ExtendArray (& yyStateStack, & yyStateStackSize, sizeof (yyStateRange));
ExtendArray (& yyAttributeStack, & yyAttrStackSize, sizeof (tParsAttribute));

yyStateStackPtr
yyAttrStackPtr
yyMaxPtr

= yyAttrStackPtr - yyAttributeStack;

yyStateStack + StateStackPtr;
yyAttributeStack + AttrStackPtr;
& yyStateStack [yyStateStackSize];

}i
* yyStateStackPtr = yyState;

TermTrans:

for (;;) {

/* SPEC State = Table (State,

Terminal); terminal transition */

register yyStateRange * TCombPtr;
TCombPtr = (yyStateRange *) (yyTBasePtr [yyState] + yyTerminal);
if (* TCombPtr ++ == yyState) { yyState = * TCombPtr; break; };

if ((yyState = yyDefault [yyStatel])

/* error recovery */

if (yyState >= yyFirstReadReduce) {
if (yyState < yyFirstReduce) {
yyStateStackPtr ++;

!= yyNoState) goto TermTrans;

/* reduce or read-reduce? */
/* read-reduce */

(yyAttrStackPtr ++)->Scan = Attribute;

yyTerminal = GetToken ();
yyIsRepairing = false;

bi

for (;;) {
register long yyNonterminal;

switch (yyState) {
case yyStopState: /* S’

L End-of-Tokens

*/

ReleaseArray (& yyStateStack, & yyStateStackSize, sizeof (yyStateRange));
ReleaseArray (& yyAttributeStack, & yyAttrStackSize, sizeof (tParsAttribute));

return yyErrorCount;
case 21:
case 19: /* L : L S . */

yyStateStackPtr —-= 2; yyAttrStackPtr -= 2;
case 22: /* L : . */
yyStateStackPtr —-= 0; yyAttrStackPtr -= 0;

case 23: /* S : i’ =" E . */

yyStateStackPtr —-= 3; yyAttrStackPtr -

case 24: /*E : E '+' E . */

yyStateStackPtr —-= 3; yyAttrStackPtr -
case 25: /* E E'’'-" E . */

yyStateStackPtr —-= 3; yyAttrStackPtr -
case 26:

case 17: /* E E’'* E . */

yyStateStackPtr —-= 3; yyAttrStackPtr -

case 27:
case 18: /*E : E /" E . */

yyStateStackPtr —-= 3; yyAttrStackPtr -= 3;
case 28:
case 14: /* E : "i’ . */

yyStateStackPtr —-= 1; yyAttrStackPtr -= 1;
case 29:
case 15: /* E : 'n’ . */

yyStateStackPtr —-= 1; yyAttrStackPtr -= 1;
case 30:

case 16: /*E : '(" E ') . */

yyStateStackPtr —-= 3; yyAttrStackPtr -

bi

yyNonterminal = 111; break;

yyNonterminal = 111; break;

yyNonterminal = 112; break;

yyNonterminal = 113; break;

yyNonterminal = 113; break;

yyNonterminal = 113; break;

yyNonterminal = 113; break;

yyNonterminal = 113; break;

yyNonterminal = 113; break;

yyNonterminal = 113; break;

/* SPEC State = Table (Top (), Nonterminal); nonterminal transition */
yyState = * (yyNBasePtr [* yyStateStackPtr ++] + yyNonterminal);

* yyAttrStackPtr ++ = yySynAttribute;
goto Parseloop;

if (yyState < yyFirstReadReduce)
bi

} else {
yyStateStackPtr ++;

/* read-reduce? */

/* read */

20



(yyAttrStackPtr ++)->Scan = Attribute;
yyTerminal = GetToken ();
yyIsRepairing = false;
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