
User’s Guide

to

SIPP - a 3D rendering library

version 3.0

Jonas Yngvesson

Inge Wallin

last updated 10 Mar 1992

Copyright c© 1992 Jonas Yngvesson, Inge Wallin

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions

that the section entitled “GNU General Public License” is included exactly as in the original, and

provided that the entire resulting derived work is distributed under the terms of a permission notice

identical to this one.

Permission is granted to copy and distribute translations of this manual into another language

under the above conditions for modified versions, except that the section entitled “GNU General

Public License” may be included in a translation approved by the author instead of in the original

English.

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 1, February 1989

Copyright c© 1989 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The license agreements of most software companies try to keep users at the mercy of those

companies. By contrast, our General Public License is intended to guarantee your freedom to share

and change free software—to make sure the software is free for all its users. The General Public

License applies to the Free Software Foundation’s software and to any other program whose authors

commit to using it. You can use it for your programs, too.

When we speak of free software, we are referring to freedom, not price. Specifically, the General

Public License is designed to make sure that you have the freedom to give away or sell copies of

free software, that you receive source code or can get it if you want it, that you can change the

software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights

or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you

if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for a fee, you must

give the recipients all the rights that you have. You must make sure that they, too, receive or can

get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license

which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands

that there is no warranty for this free software. If the software is modified by someone else and

passed on, we want its recipients to know that what they have is not the original, so that any

problems introduced by others will not reflect on the original authors’ reputations.

GNU GENERAL PUBLIC LICENSE 2

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

1. This License Agreement applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General Public

License. The “Program”, below, refers to any such program or work, and a “work based on

the Program” means either the Program or any work containing the Program or a portion of

it, either verbatim or with modifications. Each licensee is addressed as “you”.

2. You may copy and distribute verbatim copies of the Program’s source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each copy

an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this General Public License and to the absence of any warranty; and give any other

recipients of the Program a copy of this General Public License along with the Program. You

may charge a fee for the physical act of transferring a copy.

3. You may modify your copy or copies of the Program or any portion of it, and copy and

distribute such modifications under the terms of Paragraph 1 above, provided that you also do

the following:

• cause the modified files to carry prominent notices stating that you changed the files and

the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole or in part

contains the Program or any part thereof, either with or without modifications, to be

licensed at no charge to all third parties under the terms of this General Public License

(except that you may choose to grant warranty protection to some or all third parties, at

your option).

• If the modified program normally reads commands interactively when run, you must cause

it, when started running for such interactive use in the simplest and most usual way, to

print or display an announcement including an appropriate copyright notice and a notice

that there is no warranty (or else, saying that you provide a warranty) and that users may

redistribute the program under these conditions, and telling the user how to view a copy

of this General Public License.

• You may charge a fee for the physical act of transferring a copy, and you may at your

option offer warranty protection in exchange for a fee.

Mere aggregation of another independent work with the Program (or its derivative) on a volume

of a storage or distribution medium does not bring the other work under the scope of these

terms.

4. You may copy and distribute the Program (or a portion or derivative of it, under Paragraph

GNU GENERAL PUBLIC LICENSE 3

2) in object code or executable form under the terms of Paragraphs 1 and 2 above provided

that you also do one of the following:

• accompany it with the complete corresponding machine-readable source code, which must

be distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give any third party

free (except for a nominal charge for the cost of distribution) a complete machine-readable

copy of the corresponding source code, to be distributed under the terms of Paragraphs 1

and 2 above; or,

• accompany it with the information you received as to where the corresponding source code

may be obtained. (This alternative is allowed only for noncommercial distribution and

only if you received the program in object code or executable form alone.)

Source code for a work means the preferred form of the work for making modifications to

it. For an executable file, complete source code means all the source code for all modules it

contains; but, as a special exception, it need not include source code for modules which are

standard libraries that accompany the operating system on which the executable file runs, or

for standard header files or definitions files that accompany that operating system.

5. You may not copy, modify, sublicense, distribute or transfer the Program except as expressly

provided under this General Public License. Any attempt otherwise to copy, modify, sublicense,

distribute or transfer the Program is void, and will automatically terminate your rights to use

the Program under this License. However, parties who have received copies, or rights to use

copies, from you under this General Public License will not have their licenses terminated so

long as such parties remain in full compliance.

6. By copying, distributing or modifying the Program (or any work based on the Program) you

indicate your acceptance of this license to do so, and all its terms and conditions.

7. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients’ exercise of the rights granted herein.

8. The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version

number of the license which applies to it and “any later version”, you have the option of

following the terms and conditions either of that version or of any later version published by

the Free Software Foundation. If the Program does not specify a version number of the license,

you may choose any version ever published by the Free Software Foundation.

9. If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are different, write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free Software Foundation; we

GNU GENERAL PUBLIC LICENSE 4

sometimes make exceptions for this. Our decision will be guided by the two goals of preserving

the free status of all derivatives of our free software and of promoting the sharing and reuse of

software generally.

NO WARRANTY

10. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-

RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”WITHOUTWARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMI-

TED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-

FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE

DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR

OR CORRECTION.

11. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRI-

TINGWILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTYWHOMAYMODIFY

AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO

YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-

SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES

OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBI-

LITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 5

Applying These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to humanity,

the best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of

each source file to most effectively convey the exclusion of warranty; and each file should have at

least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the

General Public License. Of course, the commands you use may be called something other than ‘show

w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign

GNU GENERAL PUBLIC LICENSE 6

a “copyright disclaimer” for the program, if necessary. Here a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program ‘Gnomovision’ (a program to direct compilers to make passes
at assemblers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

That’s all there is to it!

Chapter 1: What is SIPP? 7

1 What is SIPP?

SIPP is a library for creating 3-dimensional scenes and rendering them using a scan-line z-buffer

algorithm. A scene is built up of objects which can be transformed with rotation, translation and

scaling. The objects form hierarchies where each object can have arbitrarily many subobjects and

subsurfaces. A surface is a number of connected polygons which are rendered with either Phong,

Gouraud or flat shading. An image can also be rendered as a line drawing of the polygon edges

without any shading at all.

The library also provides 3-dimensional texture mapping with automatic interpolation of tex-

ture coordinates. Simple anti-aliasing can be performed through oversampling. The scene can be

illuminated by an arbitrary number of lightsources. These lightsources can be of three basic types:

directional, point or spotlight. Light from spotlights can cast shadows.

It is possible to create several virtual cameras, and then specify one of them to use when

rendering the image.

A major feature in SIPP is the ability for a user to provide his own shading function for a

surface. This makes it easy to experiment with various shading models and to do special effects.

A basic shading algorithm is provided with the library, and also a package of other, more special

shaders.

Images can be rendered directly onto a file in the Portable Pixmap format (ppm) or, for line

images, Portable Bitmap, (pbm) or, with a function defined by the user, into anything that it is

capable of plotting a pixel (or drawing a line), e.g. a window in a window system or even a plotter

file.

The object creation functions in SIPP are on a rather low level so to make it easier to build

scenes, a set of object primitives, like sphere, cylinder, prism etc., is included.

1.1 Authors of SIPP

The following persons have written or contributed to SIPP.

• Jonas Yngvesson wrote most of the otherwise unattributed functions in SIPP as well as most

of the documentation.

Chapter 1: What is SIPP? 8

• Inge Wallin wrote the geometric functions, some object primitives, pixmap functions, several

demonstration programs and the rest of the documentation.

• David Jones provided the code for the prism and cone primitives.

• Jon Buller wrote the noise and Dnoise functions (not specifically for SIPP though, they were

posted on the net).

• Several other people have aided the development by reporting bugs, suggested enhancements,

etc. etc. I will not mention any names, you know who you are.

1.2 Where can I get SIPP?

There will probably be a number of sites archiving SIPP. Currently the latest release can always

be fetched via anonymous ftp from isy.liu.se, (IP no. 130.236.1.3) in the directory pub/sipp.

Two older versions (2.0 and 2.1) have been posted to comp.sources.misc. They are in Volume

16 and Volume 21 respectively and should be on any site that archives that group.

Chapter 2: Installation 9

2 Installation

This section describes the installation of the SIPP rendering library. You should install not only

the library itself, but also the on-line documentation so that your users will know how to use it.

You can create typeset documentation from the file ‘sipp.texinfo’ as well as an on-line Info file.

The following steps are also described in the file ‘INSTALL’ in the directory ‘sipp-3.0’.

2.1 Installation of the SIPP library

Edit the file ‘Makefile’ to reflect the situation at your site. The things you might have to

change are clearly marked in the beginning of that file. They are also described below.

• The NOVOID definition should be used if the C compiler on your system does not understand

the type void.

• If the C library on your system does not contain the functions memcpy() or memset(), or the

include file ‘memory.h’ does not exist, you should use the NOMEMCPY definition.

• If your system does not support the alloca() function, the ALLOCA definition should be used.

This will cause SIPP to use the portable version of alloca() available from the GNU project.

• The definitions of LIBDIR, INCLUDEDIR, MANDIR and MANEXT determines where in your file hier-

archy SIPP will be installed. LIBDIR is the directory where the final library file (‘libsipp.a’)

will be placed. When a program that uses SIPP is linked, this directory should be in the path

where the linker looks for libraries, either direct or with the aid of the -L switch. INCLUDEDIR

is the directory where the includefiles necessary to use SIPP will be placed. When a program

that uses SIPP is compiled, this directory should be in the path where the compiler searches

for include files, either direct or with the aid of the -I switch. MANDIR is the directory in which

to place the UNIX style ‘man’ page provided with SIPP. MANEXT determines what extension

that manual file will get.

Apart from these SIPP specific definitions, the usual C compiler and flags to this compiler must

of course be set to values suitable on your system.

The only other item, apart from the ‘Makefile’, is a definition in the includefile ‘sipp.h’ in

the ‘libsipp’ directory. In this file a macro called RANDOM() is defined. If your system does not

have the drand48() function, you must change this definition. The macro should return a random

floating point number in the range (-1, 1).

Chapter 2: Installation 10

By just typing make in the ‘sipp-3.0’ directory, the library and the demonstration programs

will be compiled. The library is not installed, but only compiled in place.

By typing make library, the library will be compiled in place but the demonstration programs

will not.

Typing make demos will compile the demonstration programs only. Since the demos require it,

however, the library will also be compiled if it was not done before.

Finally, typing make install will compile the library if it was not done before, and copy that,

the include files and the manual pages to their appropriate places.

2.2 Installation of the on-line Info manual.

1. Create the Info files ‘sipp’, ‘sipp-1’, ‘sipp-2’ and so on from ‘sipp.texinfo’. If you have

the makeinfo program, you can do this by running it on ‘sipp.texinfo’. Otherwise you can

do it with emacs by running these steps:

1. Read ‘sipp.texinfo’ into an emacs buffer.

2. Type ‘M-X texinfo-format-buffer’

3. Save the newly created Info file ‘sipp’, ‘sipp-1’, ‘sipp-2’ and so on .

2. Move the Info file ‘sipp’, ‘sipp-1’, ‘sipp-2’ and so on to the standard Info directory. Usually

this is ‘/usr/gnu/emacs/info’ or something similar. (See step 3 above).

3. Edit the file ‘dir’ in the info directory and enter one line to contain a pointer to the Info file

‘sipp’. The line can, for instance, look like this:

* SIPP: (sipp). 3D rendering library.

2.3 How to make typeset documentation from sipp.texinfo

You can also make a typeset manual from the file ‘sipp.texinfo’. To do this, you must have

the TEX text formatting program installed. Just follow these steps:

1. If the file ‘texinfo.tex’ is not properly installed in the path given by the environment variable

TEXINPUTS, get it and put it in the same directory as ‘sipp.texinfo’ (the ‘doc’ directory of

SIPP). This file contains macros used by the TEX text formatting program to produce typeset

output from a texinfo file. You can get this from, e.g., prep.ai.mit.edu in the US or from

isy.liu.se in Europe.

Chapter 2: Installation 11

2. Run TEX by typing ‘tex sipp.texinfo’. You might need to do this twice to get all cross

references correct. If you have the texindex program, you can create a sorted index by typing

‘texindex sipp.cp sipp.fn’ between the two TEX passes. If you don’t do this, you still get

a typeset manual, but you will not get the index.

3. Convert the resulting device independent file ‘sipp.dvi’ to a form which your printer can

output and print it. If you have a postscript printer there is a program, dvi2ps, which can do

this. There is also a program which comes together with TEX, dvips, which you can use.

Chapter 3: Getting started 12

3 Getting started

This chapter will be a small introduction of SIPP. We will go through the steps of creating a

simple scene and then enhance it with some special effects. No specific details about the functions

we use will be explained, they can be found in other parts of this manual.

The first two things in a program using SIPP should be inclusion of ‘sipp.h’ and a call to

sipp_init(). Then we can start using the functions in SIPP to create a scene:

#include <stdio.h>

#include <sipp.h>
#include <primitives.h>

main()
{

FILE *image_fd;

Object *sphere;
Surf_desc sphere_surface;

sipp_init();

sphere_surface.ambient = 0.4;
sphere_surface.specular = 0.6;
sphere_surface.c3 = 0.1;
sphere_surface.color.red = 0.70; /* firebrick red */
sphere_surface.color.grn = 0.13;
sphere_surface.color.blu = 0.13;
sphere_surface.opacity.red = 1.0; /* Totally opaque */
sphere_surface.opacity.grn = 1.0;
sphere_surface.opacity.blu = 1.0;

sphere = sipp_sphere(2.0, 40, &sphere_surface, basic_shader, WORLD);
object_add_subobj(sipp_world, sphere);

lightsource_create(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, LIGHT_DIRECTION);

camera_params(sipp_camera, 0.0, 10.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.4);

image_fd = fopen("ex1.ppm", "w");
render_image_file(400, 400, image_fd, PHONG, 1);

}

Chapter 3: Getting started 13

If the program is stored in a file called ‘ex1.c’ we can create an executable program with the

following command line:

cc -o ex1 ex1.c -lsipp -lm

When run, the program will create a PPM-file containing a 400x400 image of a red sphere lit

by a single lightsource.

In the program we are going through the following steps: First we initialize the library with a

call to sipp_init(). Next we fill in a description of surface properties in the kind of structure

used in SIPP’s basic internal shader. We then create a sphere that will be shaded with the basic

shader using the previously defined surface properties and tell SIPP to install this sphere among

the objects that should be considered when rendering. We create a lightsource and define where

the camera is and where it is looking. Last we open a file and tell SIPP to render the scene into

that file.

3.1 Enhancing the scene

A single red sphere is not a very exciting image so we will now enhance the image with some

more interesting effects. We will put a wooden floor under the sphere and exchange the lightsource

for a spotlight that will cast a shadow of the sphere onto the floor. The floor is created as a simple

block and we use the wood shader supplied in the library. There will be rather high frequencies in

the wood pattern so we will render the image with some oversampling to make it look better. The

code looks like this:

#include <stdio.h>

#include <sipp.h>
#include <primitives.h>
#include <shaders.h>

main()
{

FILE *image_fd;

Object *sphere;
Object *floor;
Surf_desc sphere_surface;
Wood_desc floor_surface;

Chapter 3: Getting started 14

sipp_init();
sipp_shadows(TRUE, 600);

sphere_surface.ambient = 0.5;
sphere_surface.specular = 0.6;
sphere_surface.c3 = 0.1;
sphere_surface.color.red = 0.70; /* firebrick red */
sphere_surface.color.grn = 0.13;
sphere_surface.color.blu = 0.13;
sphere_surface.opacity.red = 1.0; /* Totally opaque */
sphere_surface.opacity.grn = 1.0;
sphere_surface.opacity.blu = 1.0;

sphere = sipp_sphere(2.0, 40, &sphere_surface, basic_shader, WORLD);
object_add_subobj(sipp_world, sphere);

floor_surface.ambient = 0.5;
floor_surface.specular = 0.0;
floor_surface.c3 = 0.99;
floor_surface.scale = 3.0;
floor_surface.base.red = 0.770; /* Very light brown */
floor_surface.base.grn = 0.568;
floor_surface.base.blu = 0.405;
floor_surface.ring.red = 0.468; /* Darker brown */
floor_surface.ring.grn = 0.296;
floor_surface.ring.blu = 0.156;

floor = sipp_block(20.0, 20.0, 1.0, &floor_surface, wood_shader,
WORLD);

object_move(floor, 0.0, 0.0, -2.5); /* Place it under the sphere */
object_add_subobj(sipp_world, floor);

spotlight_create(10.0, 10.0, 10.0, 0.0, 0.0, 0.0, 40.0,
1.0, 1.0, 1.0, SPOT_SOFT, TRUE);

camera_params(sipp_camera, 0.0, 10.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.4);

image_fd = fopen("ex2.ppm", "w");
render_image_file(400, 400, image_fd, PHONG, 2);

}

Chapter 4: Basic concepts 15

4 Basic concepts

This chapter introduces and briefly explains some of the basic concepts used in SIPP. They will

later be used in this manual without further explanation.

4.1 Polygons

SIPP can actually only render polygons, so everything else must be built from those. SIPP can

handle planar polygons without holes, either convex or concave. The polygons have a defined front

and back side, and which is which is defined by the order in which the polygon vertices are given.

Vertices must be given counterclockwise when looking at the front side of the polygon.

4.2 Surfaces

Surfaces are the first step above polygons in the object hierarchy supported by SIPP. A surface

is a collection of polygons that is shaded by the same shader (See Section 4.5 [Shading functions],

page 16) using the same surface description (See Section 4.6 [Surface descriptions], page 16). A

pointer to that shader and surface description is stored in the surface. If polygons within a surface

share vertices, the surface normal will be interpolated across the polygons at rendering time, to

create the impression of a smooth surface.

4.3 Objects

Objects are the highest level in the object hierarchy. An object is a collection of surfaces and/or

other objects, which are then called subobjects. Object trees can be built to arbitrary depths.

Transformations can be applied to objects and if an object has subobjects the transformation will

propagate recursively down the object tree. Every object has its current transformation relative to

its parent object stored in a transformation matrix which can be read and written.

There is a predefined object called sipp_world. When SIPP renders a scene it always starts in

this object, so all objects that are to be rendered must be subobjects (or subsubobjects etc.) to it.

The world object can be transformed like any other object.

Chapter 4: Basic concepts 16

4.4 Texture coordinates

At each polygon vertex it is possible to specify up to three floating point numbers called texture

coordinates. These numbers are linearly interpolated across the polygon and sent to the shader

(See Section 4.5 [Shading functions], page 16) at rendering time. It is up to the implementor

of the shader to decide what to use them for. Texture coordinates are not affected by object

transformations.

4.5 Shading functions

Every surface (See Section 4.2 [Surfaces], page 15) in a scene has a shading function (or shader)

associated with it. The shader is a regular C function, with a well defined interface, which is called

for every pixel in the surface when it is rendered. SIPP supplies the shader with enough information

for it to do a shading calculation, i.e. decide what color that particular pixel should have. The

shader is also responsible for deciding the opacity of the surface. Besides the information supplied

by SIPP (world position, lightsources, texture coordinates, etc.), the shader also gets a surface

description (See Section 4.6 [Surface descriptions], page 16) which the user has defined.

4.6 Surface descriptions

Every surface (See Section 4.2 [Surfaces], page 15) has a description of its surface properties.

These properties can be e.g. color, material, opacity, etc. Exactly what information is stored

depends on which shader (See Section 4.5 [Shading functions], page 16) is used for shading the

surface. The exact representation of this information is entirely up to the shader implementor.

4.7 Datatypes

The include file ‘sipp.h’ defines several datatypes that are used when working with SIPP. We

will describe them briefly here and also give the definitions for those that a user might need to

access.

• bool

A boolean type which can have the value TRUE or FALSE.

Chapter 4: Basic concepts 17

• Object

This is an abstract data type holding information about an object. Functions that creates ob-

jects returns pointers to Object and all functions that operate on objects, e.g. transformations,

take such pointers as parameters.

• Surface

Similar to Object but contains information about a surface. The user only needs to handle

pointers to this type also.

• Color

This is a structure with three members describing a color in RGB-space. Each member is a

double and should have a value in the range [0, 1].

typedef struct {
double red;
double grn;
double blu;

} Color;

• Vector

Structure defining a 3-D vector. See Section 7.1.1 [Vector operations], page 26 for more detailed

information.

typedef struct {
double x;
double y;
double z;

} Vector;

• Transf_mat

A transformation matrix is used in every object to hold its current transformation. The

matrix is stored as a 4x3 matrix instead of a complete 4x4 matrix in order to save space. See

Section 7.1.2 [Matrix operations], page 27 for more detailed information.

typedef struct {
double mat[4][3];

} Transf_mat;

• Camera

Camera is a structure holding a virtual camera. All functions involved work with pointers to

this type. SIPP provides a predefined Camera and a pointer to it called sipp_camera. This

camera is the default viewpoint used when rendering a scene.

• Lightsource

This structure hold information about a lightsource. Two members in the struct are of interest

to users writing their own shaders.

Color color;

and

Chapter 4: Basic concepts 18

Lightsource *next;

color decides the color of the light emitted from the lightsource and next points to the

next lightsource defined in the scene (or NULL). See Section 12.2 [Writing your own shaders],

page 55 for a description of how to use this information.

• Surf_desc

This is the surface description (See Section 4.6 [Surface descriptions], page 16) for the internal

shader, basic_shader() (see Section 12.1.1 [The basic shader], page 48). It has the following

definition:

typedef struct {
double ambient;
double specular;
double c3;
Color color;
Color opacity;

} Surf_desc;

ambient is a number in the range [0, 1] specifying how much of the surface color that is

visible when the object is not lit by any lightsource.

specular is a number in the range [0, 1] specifying how much light that is reflected in a

specular highlight on the surface.

c3 is also a number in the range [0, 1]. It specifies how "shiny" the surface is. 0 means a

very shiny surface while 1 indicates a rather dull one.

color is simply the color of the surface.

opacity specifies how opaque the surface is. This is stored as a color to allow different

opacities for the different color bands. The values should be in the range [0, 1] with 1

indicating a completely opaque object and 0 a completely transparent (invisible) one.

Chapter 5: Initializations 19

5 Initializations

Before using any of the functions, SIPP needs to be initialized. Initialization is done with a call

to the following function:

void
sipp_init()

Apart from initializations, some default settings are created:

• Backfacing polygons are culled.

• Background color is black.

• No shadows are cast.

• The camera is placed in (0 0 10), looking at the origin and with the world y-axis as the up-axis.

sipp_init() takes no parameters

There are also some functions that determine various global behavior of SIPP. These functions

can be called at any time:

void
sipp_background(red, green, blue)

double red;
double green;
double blue;

This function sets the background color in the rendered image. The parameters are doubles in

the range [0, 1]. The default value (set by sipp_init()) is black.

void
sipp_show_backfaces(flag)

bool flag;

Normally SIPP checks if a polygon is facing away from the viewpoint and if that is the case, the

polygon is not considered in the rendering. There are times when this is not desirable. If one have

a database of polygons with inconsistent orientations (see Section 4.1 [Polygons], page 15), it is

necessary to render all polygons in it. There are also cases when objects have holes and backfacing

polygons are visible through that hole. If flag is TRUE SIPP will render all polygons, if flag is

FALSE (default), backfacing polygons will be culled.

Chapter 5: Initializations 20

void
sipp_shadows(flag, size)

bool flag;
int size;

This function tells SIPP if it objects should cast shadows. When flag is TRUE shadows are cast.

The default is not to do it. Only some types of lightsources are capable of producing shadows and it

is possible to turn that ability on and off for each such lightsource (See Chapter 8 [Lights], page 33).

SIPP uses a technique called depth maps to do shadows (See Chapter 9 [Shadows], page 37). It is

a kind of texture mapping and the size of the depth maps are defined by the parameter size. As

a rule of thumb one could say that the depth maps should be at least as large as the image itself

but this may vary from case to case.

A word of warning: Rendering images with shadows requires very large amounts of memory and

takes considerably longer time than doing it without them.

Chapter 6: Creating objects 21

6 Creating objects

This chapter describes how to build SIPP objects from polygons and up. In the library there are

also a number of functions that create complete objects on a higher level (see Chapter 13 [Object

primitives], page 58). Those functions all use the low level tools described here.

6.1 Creating polygons and surfaces

To build polygons and surfaces, SIPP uses two stacks, a vertex stack and a polygon stack.

Polygons are created by pushing vertices onto the vertex stack and then calling a function that

creates a polygon from these vertices and push this newly created polygon onto the polygon stack.

When a number of polygons have been defined they can then be combined into a surface.

The order in which vertices are pushed are important because this determines the front and the

back face of the polygon. Vertices should be pushed in counterclockwise order when looking at the

front face of the polygon.

Note also that if polygons share vertices, these vertices should be pushed for each polygon. SIPP

looks up shared vertices automagically.

The following functions are used in the described process:

void
vertex_push(x, y, z)

double x, y, z;

Push a vertex onto the vertex stack.

void
vertex_tx_push(x, y, z, u, v, w)

double x, y, z;
double u, v, w;

Push a vertex with texture coordinates defined by (u, v, w) onto the vertex stack. Calls to

vertex_push() and vertex_tx_push() should not be mixed within a polygon since that would

make texture interpolation to produce garbage. vertex_push() gives the vertex texture coordinates

(0 0 0).

Chapter 6: Creating objects 22

void
polygon_push()

Takes all vertices currently on the vertex stack and creates a polygon from them. The new

polygon is pushed onto the polygon stack and the vertex stack is emptied.

Surface *
surface_basic_create(ambient, red, green, blue, specular, c3,

opred, opgreen, opblue)
double ambient;
double red, green, blue;
double specular;
double c3;

double opred, opgreen, opblue;

Takes all polygons currently on the polygon stack, creates a surface from them and returns a

pointer to the new surface. The created surface will be shaded with the basic shading function

basic_shader() and the arguments to surface_basic_create() are the values that will be placed

in the surface description, which for basic_shader() is of type Surf_desc(see Chapter 4 [Basic

concepts], page 15 and Chapter 12 [Shaders], page 48).

Surface *
surface_create(surface_desc, shader)

void *surface_desc;
Shader *shader;

Takes all polygons currently on the polygon stack, creates a surface from them and returns a

pointer to the new surface. The created surface will be shaded with the shading function shader

using the surface description pointed to by surface_desc (see Chapter 12 [Shaders], page 48).

void
surface_basic_shader(surface, ambient, red, green, blue, specular, c3,

opred, opgreen, opblue)
Surface *surface;
double ambient;
double red, green, blue;
double specular;
double c3;
double opred, opgreen, opblue;

This function is used when a previously created surface should be changed so that it is shaded

with basic_shader(). This function can also be used to set new values in the surface description

if surface is already shaded with basic_shader().

Chapter 6: Creating objects 23

void
surface_set_shader(surface, surface_desc, shader)

Surface *surface;
void *surface_desc;
Shader *shader;

This function is used when a previously created surface should be changed so that it is shaded

with another shader than the one specified at creation time.

6.2 Building objects

An object in SIPP is a more abstract concept than surfaces and polygons. It is a general

"container" which can hold several surfaces and also several other objects, which are then called

subobjects. Such hierarchies, or trees, of objects can be built to arbitrary depths. When an object

is transformed in some way, the transformation is propagated down to all objects below it in the

tree.

When SIPP renders a scene it begins in the predefined object sipp_world and recursively

traverses the tree under it, rendering all objects it finds. This means that it is perfectly possible

to create objects that will not be rendered. For an object to be rendered it must be installed

somewhere in the tree below sipp_world.

To build objects and object trees the following functions are provided:

Object *
object_create()

This function creates a new object and returns a pointer to it. The new object contains no

surfaces or subobjects, and is not installed in any tree.

void
object_delete(object)

Object *object;

Delete an object. Release all memory occupied by an object, its surfaces and its subobjects.

This operation is only possible to do on a top level object, i.e. an object that is not a subobject

to any other object. SIPP keeps track of internal references, and if some parts of the tree below

object are referenced from other objects (see Section 6.3 [Duplicating objects], page 24), those

parts are not deleted. It is not possible to delete sipp_world.

Chapter 6: Creating objects 24

void
object_add_surface(object, surface)

Object *object;
Surface *surface;

Install a surface in an object.

void
object_sub_surface(object, surface)

Object *object;
Surface *surface;

Remove a surface from an object.

void
object_add_subobj(object, subobject)

Object *object;
Object *subobject;

Install subobject as a subobject in object. Any transformations of subobject will now be

performed relative the local coordinate system in object.

A word of warning: There is no detection of "circular lists" in SIPP. This means that if an

object is installed as a subobject in an object that is already below it in the tree, SIPP will go into

eternal recursion and crash when it tries to render the scene.

void
object_sub_subobj(object, subobject)

Object *object;
Object *subobject;

Remove subobject as a subobject in object. If an object is to be deleted, this function must

be used first to remove it from its parent object(s).

6.3 Duplicating objects

If a complicated object has been built, it is often convenient to be able to copy and reuse it.

SIPP supports three levels of copying object hierarchies:

Chapter 6: Creating objects 25

Object *
object_instance(object)

Object *object;

Create a new instance of an object and return a pointer to it. This is the "shallowest" version

of object copy in SIPP. It only creates a copy of the top level object, pointed to by object, and let

the new instance reference the same surfaces and subobjects as the original. This saves space but

has the property that if a subobject of one of the instances are changed in some way (transformed,

new subobjects, etc.) the same change will appear in the other. The new object will have the

identity matrix as its transformation matrix.

Object *
object_dup(object)

Object *object;

This version of object duplication copies not only the top level object, but also all the subobjects

recursively. All copied objects in the tree will reference the same surfaces though, so even if object

changes will be unique in the two copies, surface changes (new color, new shader, etc.) in one copy

will affect both. The new object will have the identity matrix as its transformation matrix.

Object *
object_deep_dup(object)

Object *object;

Copy a complete object tree, objects, surfaces and all. The new object will have the identity

matrix as its transformation matrix.

Chapter 7: Transformations 26

7 Transformations

All objects can be transformed with the usual homogeneous transformations: scaling, translation

and rotation. The transformation is stored in a transformation matrix for each object. This matrix

can also be read and written directly.

The same transformations that can be applied to objects can also be applied to the matrices

directly. There is also a vector type defined and a number of operations defined on it.

7.1 Geometric operations

To use the vector and matrix functions and macros definied in the following section, you must

include the following line into your program:

#include <geometric.h>

In geometric.h include file, all data types, macros and functions defined in this section are

declared.

7.1.1 Vector operations

SIPP uses row vectors and not column vectors. A vector is defined as follows:

typedef struct {
double x;
double y;
double z;

} Vector;

This vector type is used both for directional vectors and points positional vectors. In the

description below, lower case letters denote scalar values and upper case letters denote vectors. All

operations are macros except the last one, vecnorm().

MakeVector(V, xx, yy, zz)

Put xx, yy and zz in the x, y and z slot of the Vector V respectively.

Chapter 7: Transformations 27

VecNegate(A)

Negate all components of the Vector A.

VecDot(A, B)

Return the dot product of the two Vectors A and B.

VecLen(A)

Return the length of the Vector A.

VecCopy(A, B)

Copy the Vector B to the Vector A (A = B; using C notation).

VecAdd(C, A, B)

Add the two Vectors A and B and put the result in C (C = A + B; using C notation).

VecSub(C, A, B)

Subtract the Vector B from Vector A and put the result in C (C = A - B; using C nota-

tion).

VecScalMul(B, a, A)

Multiply the Vector A with the scalar a and put the result in Vector B (B = a * A; using

C notation).

VecAddS(C, a, A, B)

Multiply the Vector A with the scalar a, add it to Vector B and put the result in Vector

C (C = a * A + B; using C notation).

VecComb(C, a, A, b, B)

Linearly combine the two Vectors A and B and put the result in Vector C (C = a * A +

b * B; using C notation).

VecCross(C, A, B)

Cross multiply Vector A with Vector B and put the result in C (C = A X B;).

void vecnorm(v)

Vector *v;

Normalize the vector v, i.e. keep the direction but make it have length 1. The length

of v should not be equal to 0 to begin with. NOTE: This is the only function operating

on vectors in sipp. All the other operations are macros.

7.1.2 Matrix operations

An full homogenous transformation matrix has 4 x 4 elements. However, all linear transforma-

tions use only 4 x 3 values so to save space a SIPP transformation matrix only store 4 x 3 values.

Also, if 4 x 4 matrices are used, all vectors must have 4 elements which we want to avoid. Thus

the transformation matrix used in sipp is defined as follows:

Chapter 7: Transformations 28

typedef struct {
double mat[4][3];

} Transf_mat;

We wrap a struct around the two-dimensional array since we want to be able to say things like

&mat without being forced to write (Transf_mat *) &mat[0] which we find horrendously ugly.

SIPP has a predefined identity matrix declared in geometric.h which you can use:

extern Transf_mat ident_matrix;

The rest of this section describes the macro and functions defined in the SIPP library which

operate on SIPP transformation matrices.

MatCopy(A, B)

This macro copies the matrix B to the matrix A. A and B must both be pointers. NOTE:

This is the only macro operating on matrices in SIPP. All other operations listed here

are functions.

Transf_mat *transf_mat_create(initmat)

Transf_mat *initmat;

Allocate memory for a new transformation matrix and if initmat is equal to NULL, set

the new matrix to the identity matrix. Otherwise set the new matrix to the contents

of initmat. Return a pointer to the new matrix.

Transf_mat *transf_mat_destruct(mat)

Transf_mat *initmat;

Free the memory associated with the matrix mat.

void mat_translate(mat, dx, dy, dz)

Transf_mat *mat;

double dx;

double dy;

double dz;

Set mat to the transformation matrix that represents the concatenation of the previous

transformation in mat and a translation along the vector (dx, dy, dz).

void mat_rotate_x(mat, ang)

Transf_mat *mat;

double ang;

Set mat to the transformation matrix that represents the concatenation of the previous

transformation in mat and a rotation with the angle ang around the X axis. The angle

ang is expressed in radians.

Chapter 7: Transformations 29

void mat_rotate_y(mat, ang)

Transf_mat *mat;

double ang;

Set mat to the transformation matrix that represents the concatenation of the previous

transformation in mat and a rotation with the angle ang around the Y axis. The angle

ang is expressed in radians.

void mat_rotate_z(mat, ang)

Transf_mat *mat;

double ang;

Set mat to the transformation matrix that represents the concatenation of the previous

transformation in mat and a rotation with the angle ang around the Z axis. The angle

ang is expressed in radians.

void mat_rotate(mat, point, vector, ang)

Transf_mat *mat;

Vector *point;

Vector *vector;

double ang;

Set mat to the transformation matrix that represents the concatenation of the previous

transformation in mat and a rotation with the angle ang around the line represented

by the point point and the vector vector. The angle ang is expressed in radians.

void mat_scale(mat, xscale, yscale, zscale)

Transf_mat *mat;

double xscale;

double yscale;

double zscale;

Set mat to the transformation matrix that represents the concatenation of the previous

transformation in mat and a scaling with the scaling factors (xscale, yscale, zscale).

void mat_mirror_plane(mat, point, normal)

Transf_mat *mat;

Vector *point;

Vector *normal;

Set mat to the transformation matrix that represents the concatenation of the previous

transformation in mat and a mirroring in the plane defined by the point point and the

normal vector normal.

void mat_mul(res, a, b)

Transf_mat *res;

Transf_mat *a;

Transf_mat *b;

Multiply the two matrices a and b and put the result in the matrix res. All three

Chapter 7: Transformations 30

parameters are pointers to matrices. It is possible for res to point at the same matrix

as either a or b since the result is stored in a temporary matrix during the computations.

void point_transform(res, vec, mat)

Vector *res;

Vector *vec;

Transf_mat *mat;

Transform the point (vector) vec with the transformation matrix mat and put the

result into the vector res. The two vectors res and vec should not be the same vector

since no temporary is used during the computations.

7.2 Object transformations

There are two functions for reading and writing such matrices from and to objects:

Transf_mat *
object_get_transf(object, matrix)

Object *object;
Transf_mat *matrix;

This function retrieves the transformation matrix of the object pointed to by object. If matrix

is NULL the function will allocate space for a matrix, copy the object’s matrix into this space and

return a pointer to the new matrix. If matrix is not NULL the objects transformation matrix is

copied into the space its pointing to and the same pointer is returned.

void
object_set_transf(object, matrix)

Object *object;
Transf_mat *matrix;

This function copies the matrix pointed to by matrix into object’s transformation matrix.

There is also a special function for resetting an object’s transformation matrix to the identity

matrix, i.e. no transformation at all:

void
object_clear_transf(object)

Object *object;

Chapter 7: Transformations 31

7.2.1 Applying transformations

The transformations in this section are all applied to an object without altering its previous

transformations, i.e. they will be applied after the previous transformations have been completed.

What actually happens is that the matrix that specifies the new transformation is post multiplied

into the objects current matrix.

There are four functions for rotating objects:

void
object_rot_x(object, angle)

Object *object;
double angle;

void
object_rot_y(object, angle)

Object *object;
double angle;

void
object_rot_z(object, angle)

Object *object;
double angle;

void
object_rot(object, point, vector, angle)

Object *object;
Vector *point;
Vector *vector;
double angle;

The first three functions rotate an object about one of the primary axes in the parent object’s

local coordinate system. angle is the rotation angle given in radians. Positive rotation is given by

the "right hand rule", i.e. counterclockwise when looking along the axis towards the origin.

The fourth function is a more general rotation. It specifies a rotation of an object about an

arbitrary axis. The axis is defined as passing through point in the direction of vector, both are

described in the parent object’s local coordinate system. angle is the rotation angle in radians and

positive rotation is defined in the same way as for the previous three functions.

Chapter 7: Transformations 32

For scaling an object the following function is used:

void
object_scale(object, sx, sy, sz)

Object *object;
double sx, sy, sz;

The object pointed to by object is scaled towards the origin along the three principal axes with

the three scaling factors sx, sy and sz respectively.

The last standard transformation is translation:

void
object_move(object, dx, dy, dz)

Object *object;
double dx, dy, dz;

The object is translated along the vector (dx dy dz) from its current position. Note that the

movement is relative and not absolute. The translation vector is given in the parent coordinate

system.

There is also a general transformation function that post-multiplies any transformation matrix

into the current matrix of an object:

void
object_transform(object, matrix)

Object *object;
Transf_mat *matrix;

Chapter 8: Lights 33

8 Lights

SIPP supports two basic kinds of lights, simple lightsources and spotlights. The main difference

is that spotlights can cast shadows, while simple lightsources can not. The functions that create

any of these lights return a pointer to a Lightsource structure. This pointer is used for later

manipulations of the light such as moving it or turning it off or on. If there is no need for later

manipulations these pointers can safely be discarded. SIPP keeps track of all created lightsources

internally.

8.1 Creating lights

Simple lightsources can be of two types, directional and point lightsources. Directional light-

sources emit light that is parallel in every point in the scene, similar to light from the sun. Point

lightsources emit light from a single point in space.

Lightsource *
lightsource_create(x, y, z, red, green, blue, type)

double x, y, z;
double red, green, blue;
int type;

• x, y, z

If a directional lightsource is created these numbers specifies a vector pointing to the light-

source. If it is a point lightsource the numbers specify the exact location of it.

• red, green, blue

These numbers indicate the color of the emitted light. All three should be in the range [0, 1].

• type

This parameter defines which type of lightsource that is created. It should be one of the

predefined values LIGHT_DIRECTION or LIGHT_POINT.

Chapter 8: Lights 34

A spotlight emits a "cone" of light. There are two types of spotlights in SIPP. One has a sharp

edge on its lightcone and the other has a soft edge that blends out smoothly. Rendering scenes

with soft edged spotlights takes slightly longer time than scenes with only sharp edged spotlights.

Lightsource *
spotlight_create(x1, y1, z1, x2, y2, z2, opening, red, green, blue,

type, shadow)
double x1, y1, z1;
double x2, y2, z2;
double opening;
double red, green, blue;
int type;
bool shadow;

• x1, y1, z1

This is the position of the spotlight.

• x2, y2, z2

This is a point at which the spotlight is pointing. It is in the middle of the lightcone.

• opening

This defines, in degrees, the opening angle of the lightcone. The cone defined will be completely

lit, a soft edged lightcone will start to blend out outside this angle.

• red, green, blue

The color of the emitted light. All three numbers are in the range [0, 1].

• type

Tells SIPP which type of spotlight to create. Should be one of the predefined values SPOT_SHARP

or SPOT_SOFT.

• shadow

If TRUE, the light from the spotlight will be able to cast shadows, otherwise not. Whether

shadows actually are cast or not depend on which value sipp_shadows() (See Chapter 5

[Initializations], page 19) was called with last.

There is also a function for releasing the memory used by a lightsource or a spotlight.

void
light_destruct(light)

Lightsource *light;

• light

Pointer to the lightsource or spotlight that is to be destructed.

Chapter 8: Lights 35

8.2 Manipulating lights

When lights have been created they can be manipulated in various ways. There are functions

that are specific for lightsources, functions specific for spotlights and generic functions which works

for both kind of lights.

void
lightsource_put(lightsrc, x, y, z)

Lightsource *lightsrc;
double x, y, z;

This function is used to modify the direction, or position, of a lightsource. If (x, y, z) are

interpreted as a position or as a direction vector depends on whether lightsrc is pointing at a

point lightsource or a directional lightsource.

void
spotlight_pos(spot, x, y, z)

Lightsource *spot;
double x, y, z;

Modify the position of a spotlight.

void
spotlight_at(spot, x, y, z)

Lightsource *spot;
double x, y, z;

Modify the position the spotlight is pointing at.

void
spotlight_opening(spot, opening)

Lightsource *spot;
double opening;

Modify the opening angle of the lightcone of a spotlight. opening is given in degrees.

void
spotlight_shadows(spot, flag)

Lightsource *spot;
bool flag;

Chapter 8: Lights 36

Turn shadow casting on or off for a specific spotlight. flag set to TRUE means that the spotlight

can cast shadows.

void
light_color(light, red, green, blue)

Lightsource *light;
double red, green, blue;

Change the color of the emitted light from a lightsource or a spotlight. (red, green, blue) are

all numbers in the range [0, 1].

void
light_active(light, flag)

Lightsource *light;
bool flag;

Turn a lightsource or a spotlight on or off. If flag is TRUE the light is activated.

The last function is not really a manipulation function. It evaluates how much light from a

certain lightsource or spotlight that reaches a specific point in the scene. It also calculates a vector

pointing from this point at the light. The return value is a number in the range [0, 1] where 1 means

that all light from the lightsource reaches the point and 0 means that none of the light reaches it.

The function is intended to be used in shading functions. We describe it formally here and refer to

the chapter on how to write your own shaders for instructions and examples of how to use it (See

Section 12.2 [Writing your own shaders], page 55).

double
light_eval(light, position, light_vector)

Lightsource *light;
Vector *position;
Vector *light_vector;

• light

Pointer to the lightsource or spotlight to evaluate.

• position

Pointer to a vector specifying which point in the scene we want to check the illumination for.

The position is given in the world coordinate system.

• light_vector

Points to a space where light_eval() will store a normalized vector pointing from position

at the light.

Chapter 9: Shadows 37

9 Shadows

SIPP creates shadows with a technique called depth maps. A detailed description of this tech-

nique can be found in the article Rendering Antialiased Shadows with Depth Maps by Reeves,

Salesin and Cook in the Proceedings of SIGGRAPH 1987.

In principle, a depth map is generated for each light that should cast shadows. The depth map

is simply an image of the scene, as seen from the light, but instead of a color we store the depth

(Z-buffer value) in each "pixel". The finished map will contain the distance to the object closest

to the light in each point.

When the scene is rendered we transform each point we are shading into depth map coordinates

and if it is further away from the light than the value stored in the corresponding point in the

depth map, the point is in shadow. The actual implementation is of course a bit more complicated

with some sampling and filtering but we won’t go into that.

The reason we describe this algorithm at all is that it is easier to understand how to get good

looking shadows and why shadows sometimes look weird if one have an understanding of the

underlying process.

First of all: The shadows are generated by sampling in the depth maps. Sampling usually means

we are in danger of aliasing and this is very true in our case. SIPP automatically fits the depth map

for a spotlight so that it covers all area lit by the spotlight’s light cone (See Section 8.1 [Creating

lights], page 33). If this area is large and the depth map resolution is low, the shadows will get

very jagged.

Also, if we have a large surface that is close to perpendicular to the depth map plane, the depth

map "pixels" will be projected as long stripes on that surface, so even if the depth map resolution

is high, a shadow cast on such a surface will suffer from aliasing (be jagged).

So, if the edges of a shadow look weird, try increasing the size of the depth map (the depth map

size is set with sipp_shadows(), See Chapter 5 [Initializations], page 19). If they still look weird,

or you run out of memory, try changing the position of the lightsource that generate the shadow.

After some tweaking it is usually possible to get fairly decent shadows.

Chapter 10: Viewpoint and cameras 38

10 Viewpoint and cameras

The viewpoint model used in SIPP are a fairly standard one. A point where the camera is

located, a point which the camera looks at, a vector telling which direction is up and the focal

distance in the camera. The user can create several virtual cameras and tell SIPP to use any of

them as viewpoint when rendering an image. There is also a predefined camera called sipp_camera

which is the default viewpoint. When sipp_init() is called, this camera is initialized to be located

in (0 0 10), looking at the origin, with the world y-axis as the up direction and a focal factor (see

below) of 0.25. The user can of course change these values to whatever he likes.

To create and manipulate cameras, SIPP provide the following functions:

Camera *
camera_create()

This function creates a new virtual camera and initializes it to the same default setting as

sipp_init() does with sipp_camera (see above).

void
camera_destruct(camera)

Camera *camera;

Release the memory used by a virtual camera. sipp_camera can’t be destructed and if the

camera which is currently used as viewpoint is destructed, the current viewpoint will be reset to

sipp_camera.

void
camera_position(camera, x, y, z)

Camera *camera;
double x, y, z;

Place camera at the position (x, y, z) in the world coordinate system.

void
camera_look_at(camera, x, y, z)

Camera *camera;
double x, y, z;

Set camera to look at the point (x, y, z) in the world coordinate system.

Chapter 10: Viewpoint and cameras 39

void
camera_up(camera, x, y, z)

Camera *camera;
double x, y, z;

Set the up direction of camera to be the vector (x, y, z) in the world coordinate system. The

up direction is not allowed to be parallel to the viewing direction, i.e. the vector from the camera

position to the point it is looking at.

void
camera_focal(camera, focal)

Camera *camera;
double focal;

Set camera’s focal factor to be focal. The focal factor is the ratio between half the screen

height and the distance from the viewpoint to the screen. Another way of describing it is tan(v/2)

where v is the opening angle of the view. A large focal factor will result in a wide angle view while

a small factor will give a telescopic effect. See figure below:

screen
|
| s

viewpoint |
*-----------------------|

d |
|
|

focal = s / d

void
camera_params(camera, x1, y1, z1, x2, y2, z2, ux, uy, uz, focal)

Camera *camera;
double x1, y1, z1;
double x2, y2, z2;
double ux, uy, uz;
double focal;

Set all parameters of a camera in one call. (x1, y1, z1) is the position, (x2, y2, z2) is the

point the camera is looking at, (ux, uy, uz) is the up direction and focal is the focal factor. Note

that the up direction is not allowed to be parallel to the viewing direction, i.e. the vector from the

camera position to the point it is looking at.

Chapter 10: Viewpoint and cameras 40

void
camera_use(camera)

Camera *camera;

Tell SIPP to use camera as the current viewpoint.

Chapter 11: Rendering 41

11 Rendering

SIPP can render images in four different modes:

• PHONG rendering interpolates surface normal and texture coordinates across polygons and calls

the appropriate shading function in each point. This mode is the slowest but produces the best

results and is the only mode where any texturing effects can be used. Note that most of the

interesting effects that is possible to produce with SIPP, e.g. shadows and position dependent

light (spotlights, point lights), are in fact texturing effects.

• GOURAUD rendering only calls the shader in the vertices of the polygons and then interpolates

the calculated colors across them. The opacities returned from the shader is interpolated in

the same manner.

• FLAT rendering calls the shader once per polygon and then fills the whole polygon with the

resulting color. The whole polygon will also get the opacity returned from the shader.

• LINE rendering will produce a monochrome line image with only the edges of the polygons

drawn. No shaders are involved. No hidden line elimination are performed but backfacing po-

lygons are not drawn unless specifically ordered with sipp_show_backfaces() (See Chapter 5

[Initializations], page 19).

There are two ways of rendering the currently specified scene. They differ in the place to which

the rendered image is sent.

11.1 Rendering to file

There are two functions for rendering into a file.

void
render_image_file(width, height, file, mode, oversampling)

int width, height;
FILE *file;
int mode;
int oversampling;

width, height

These parameters specify the size of the image in pixels. If the two sizes are different, the focal

factor of the camera (See Chapter 10 [Viewpoint and cameras], page 38) is defined to refer to

the smaller of the two.

Chapter 11: Rendering 42

file

This is a pointer to an open file on which the image will be written. If the system supports it,

it could just as well be a pipe or a socket of course.

mode

This defines the rendering mode, LINE, FLAT, GOURAUD or PHONG as described earlier.

oversampling

This parameter defines how much oversampling should be performed for anti-aliasing. Each

pixel will be rendered internally as a mesh of (oversampling x oversampling) subpixels and

the average color in this mesh will be used to represent the final pixel. This parameter is

ignored in LINE mode.

The other function for rendering into a file is useful when doing animations. Since video formats

are usually interlaced, it is possible to get a smoother motion if each field (half-frame) is rendered

separately and the motion is updated between these fields instead of between frames. Unfortunately

LINE rendering can not be used when rendering fields.

void
render_field_file(width, height, file, mode, oversampling, field)

int width, height;
FILE *file;
int mode;
int oversampling;
int field;

width, height

These parameters specify the size of the image in pixels. It is the height of the frame that

should be specified in height, not the field, the field height is determined internally.

file

This is a pointer to an open file on which the field will be written. If the system supports it,

it could just as well be a pipe or a socket of course.

mode

This defines the rendering mode, FLAT, GOURAUD or PHONG as described earlier.

oversampling

This parameter defines how much oversampling should be performed for anti-aliasing.

field

This defines if an odd or even field should be produced. The value should be one of the

predefined constants ODD or EVEN. ODD will result in only odd scanlines being rendered, with 0

being the top scanline.

Chapter 11: Rendering 43

11.2 Rendering to other devices

Sometimes one does not want the rendered image to be stored in a file. Perhaps it should be

displayed in a window or further processed in some way. SIPP provides a way to have a function

called for each rendered pixel, or for each line if a line image is rendered. The function is given

information about which pixel it is and what resulting color it got. Since one of the most used

applications of this probably is rendering to a pixmap in memory, SIPP has special support for

that. See Section 11.3 [Rendering to in-core images], page 44.

Use a call to the following function to render to another device than a file:

void
render_image_func(width, height, pix_func, data, mode, oversampling)

int width, height;
void (*pix_func)();
void *data;
int mode;
int oversampling;

width, height

These parameters specify the size of the image in pixels. If the two sizes are different, the focal

factor of the camera (See Chapter 10 [Viewpoint and cameras], page 38) is defined to refer to

the smaller of the two.

pix_func

This is a pointer to a function that SIPP calls once for each rendered pixel. If LINE rendering

is used it is called for each line instead. The function must have the following interface:

void
my_pixel_function(data, col, row, red, green, blue)

my_data *data;
int col, row;
unsigned char red, green, blue;

data This is the same data pointer that was passed to render_image_func().

col, row Specifies position of the pixel. (0, 0) is upper left.

red, green, blue This is the color of the pixel quantified to 24 bits, 8 bits for each of

red, green and blue.

If LINE rendering is used instead, the user provided function is called for each rendered line

instead of each pixel and should have the following interface:

void
my_line_function(data, col1, row1, col2, row2)

my_data *data;
int col1, row1;

Chapter 11: Rendering 44

int col2, row2;

data This is the same data pointer that was passed to render_image_func().

row1, col1, row2, col2 Specification of the two endpoints of the line. (0, 0) is upper

left,

data

This is a pointer to any data structure that the pixel function (see next item) needs. It could

be a pointer to a specific pixmap or window or whatever.

mode

This defines the rendering mode, LINE, FLAT, GOURAUD or PHONG as described earlier.

oversampling

This parameter defines how much oversampling should be performed for anti-aliasing. Each

pixel will be rendered internally as a mesh of (oversampling x oversampling) subpixels and

the average color in this mesh will be used to represent the final pixel. This parameter is

ignored in LINE mode.

There is also a corresponding function to render_field_file() for rendering a field into a user

defined place. As in that function, LINE rendering can not be used when rendering fields.

void
render_field_func(width, height, pix_func, data, mode, oversampling, field)

int width, height;
void (*pix_func)();
void *data;
int mode;
int oversampling;
int field;

All parameters have the same meaning as in render_image_func() except the last one.

field

This defines if an odd or even field should be produced. The value should be one of the

predefined constants ODD or EVEN. ODD will result in only odd scanlines being rendered, with 0

being the top scanline.

11.3 Rendering to in-core images

To people who want to create images in memory, we provide two image formats similar in kind to

the Portable Pixmap (ppm) and Portable Bitmap (pbm). Only very simple operations are defined

Chapter 11: Rendering 45

on them, but the definition of the types are also given here, so those who want to write their own

functions operating on the images can do so.

11.3.1 The Sipp pixmap image data type

To use the pixmap operations you must put the following line into your source file:

#include <sipp_pixmap.h>

In this include file, the Sipp_pixmap data type is defined as well as all operations operating on

it. Only the most basic operations are defined.

A Sipp_pixmap is defined like this:

typedef struct {
int width; /* Width of the pixmap */
int height; /* Height of the pixmap */
unsigned char * buffer; /* A pointer to the image. */

} Sipp_pixmap;

The pointer buffer is a pointer to the image where each pixel is stored as three unsigned chars

in the order red, green, blue. Thus, the buffer is 3 * width * height bytes long.

The following functions are defined for a Sipp_pixmap:

Sipp_pixmap *
sipp_pixmap_create(width, height)

int width;
int height;

Returns a newly created Sipp_pixmap with the given size. The new pixmap is filled with zeros

on creation.

void
sipp_pixmap_destruct(pm)

Sipp_pixmap *pm;

Frees all memory associated to the Sipp_pixmap pm and returns it to the heap.

Chapter 11: Rendering 46

void
sipp_pixmap_set_pixel(pm, col, row, red, grn, blu)

Sipp_pixmap *pm;
int col;
int row;
unsigned char red;
unsigned char grn;
unsigned char blu;

Set the pixel at (col, row) in pixmap pm to be the color (red, grn, blu). (0, 0) is upper left. Note

that this function is directly usable in render_image_func() defined in Section 11.2 [Rendering to

other devices], page 43, when using the FLAT, GOURAUD or PHONG mode of rendering.

void
sipp_pixmap_write(file, pm)

FILE *file;
Sipp_pixmap *pm;

Write the pixmap pm to the open file file. The image is written in the Portable Pixmap format

P6 (raw ppm), the same format SIPP is using when rendering to a file.

11.3.2 The Sipp bitmap image data type

To use the pixmap operations you must put the following line into your source file:

#include <sipp_bitmap.h>

In this include file, the Sipp_bitmap data type is defined as well as all operations operating on

it. Only the most basic operations are defined.

A Sipp_bitmap is defined like this:

typedef struct {
int width; /* Width of the bitmap in pixels */
int height; /* Height of the bitmap in pixels */
int width_bytes; /* Width of the bitmap in bytes. */
unsigned char * buffer; /* A pointer to the image. */

} Sipp_bitmap;

The pointer buffer is a pointer to the image where each pixel is a bit in an unsigned char,

eight pixels per char. If the width field is not a multiple of 8, the last bits in the last byte of a

Chapter 11: Rendering 47

row are not used. The most significant bit in each byte is the leftmost pixel. The entire buffer is

width_bytes * height bytes long.

The following functions operate on a Sipp_bitmap:

Sipp_bitmap *
sipp_bitmap_create(width, height)

int width;
int height;

Returns a new Sipp_bitmap with the given size. The new bitmap is filled with zeros on creation.

void
sipp_bitmap_destruct(bm)

Sipp_bitmap *bm;

Frees all memory associated to the Sipp_bitmap bm and returns it to the heap.

void
sipp_bitmap_line(bm, col1, row1, col2, row2)

Sipp_bitmap *bm;
int col1;
int row1;
int col2;
int row2;

Draw a line from (col1, row1) to (col2, row2) in the bitmap bm. (0, 0) is upper left. Note

that this function is directly usable in render_image_func() defined in Section 11.2 [Rendering to

other devices], page 43, when using the LINE mode of rendering.

void
sipp_bitmap_write(file, bm)

FILE *file;
Sipp_bitmap *bm;

Write the bitmap bm to the open file file. The image is written in the Portable Bitmap format

P4 (pbm), the same format SIPP is using when rendering a line drawing to a file.

Chapter 12: Shaders 48

12 Shaders

A major feature in SIPP is the very flexible way shading functions are handled. Each surface

has a pointer to a function that is called whenever a point on that surface is rendered. The interface

to these shading functions is well defined so it is quite easy for a user to write his own. SIPP also

provides a number of shaders in the library for various effects.

12.1 Provided shaders

This section describes all the shaders that are provided with SIPP. To use any of them, except

basic_shader(), the program must contain the following line:

#include <shaders.h>

The most important thing to know when using a shader is how it represents its surface description

and what this description should contain. All provided shaders in SIPP use a normal C struct as

surface description.

12.1.1 The basic shader

The basic shader in SIPP, basic_shader(), is basically a Phong shader but, with some influence

from Blinn, the "shinyness" of the surface is described with a number in the range [0, 1] and the

implemented "shinyness" function changes with this constant in a more natural way (at least in

our opinion).

Surface description:

typedef struct {
double ambient;
double specular;
double c3;
Color color;
Color opacity;

} Surf_desc;

ambient is a number in the range [0, 1] specifying how much of the surface color that is visible

when the object is not lit by any lightsource.

Chapter 12: Shaders 49

specular is a number in the range [0, 1] specifying how much light that is reflected in a

specular highlight on the surface.

c3 is also a number in the range [0, 1]. It specifies how "shiny" the surface is. 0 means a very

shiny surface while 1 indicates a rather dull one.

color is simply the color of the surface.

opacity specifies how opaque the surface is. This is stored as a color to allow different opacities

for the different color bands. The values should be in the range [0, 1] with 1 indicating a

completely opaque object and 0 a completely transparent (invisible) one.

12.1.2 The Phong shader

phong_shader() implements the well known Phong illumination model.

Surface description:

typedef struct {
double ambient;
double diffuse;
double specular;
int spec_exp;
Color color;
Color opacity;

} Phong_desc;

ambient is a number in the range [0, 1] specifying how much of the surface color that is visible

when the object is not lit by any lightsource.

diffuse is a number in the range [0, 1] specifying how much light that is reflected diffusely

from the surface.

specular is a number in the range [0, 1] specifying how much light that is reflected in a

specular highlight on the surface.

spec_exp is the exponent in the specular highlight calculation. It specifies how "shiny" the

surface is. Useful values are about 1 to 200, where 1 is a rather dull surface and 200 is a very

shiny one.

color is the color of the surface.

opacity specifies how opaque the surface is. This is stored as a color to allow different opacities

for the different color bands. The values should be in the range [0, 1] with 1 indicating a

completely opaque object and 0 a completely transparent (invisible) one.

Chapter 12: Shaders 50

12.1.3 The Strauss shader

strauss_shader() is a shader designed by Paul Strauss at Silicon Graphics Inc. and published

in IEEE CG&A Nov. 1990. In his article he explains that most shading models in use today,

e.g. Phong, Cook-Torrance, are difficult to use for non-experts, and this for several reasons. The

parameters and their effect on a surface are non- intuitive and/or complicated. The shading model

Strauss designed has parameters that is easy to grasp and have a reasonably deterministic effect

on a surface, but yet produces very realistic results.

Surface description:

typedef struct {
double ambient;
double smoothness;
double metalness;
Color color;
Color opacity;

} Strauss_desc;

ambient is a number in the range [0, 1] specifying how much of the surface color that is visible

when the object is not lit by any lightsource.

smoothness is a number in the range [0, 1] that describes how smooth the surface is. This

parameter controls both diffuse and specular reflections. 0 means a dull surface while 1 means

a very smooth and shiny one.

metalness is a number in the range [0, 1]. It describes how metallic the material is. It controls

among other things how much of the surface color should be mixed into the specular reflections

at different angles. 0 means a non-metal while 1 means a very metallic surface.

color is the color of the surface.

opacity specifies how opaque the surface is. This is stored as a color to allow different opacities

for the different color bands. The values should be in the range [0, 1] with 1 indicating a

completely opaque object and 0 a completely transparent (invisible) one.

12.1.4 The marble shader

marble_shader() uses a three dimensional texture to create the appearance of marble. The

texture is created by mixing distorted strips of one color into another "base" color of the surface.

Chapter 12: Shaders 51

Surface description:

typedef struct {
double ambient;
double specular;
double c3;
double scale;
Color base;
Color strip;
Color opacity;

} Marble_desc;

ambient, specular, c3 and opacity have the same meaning as in basic_shader() (see Sec-

tion 12.1.1 [The basic shader], page 48).

scale describes how much the texture coordinates should be scaled before applying the texture.

When scaling get larger, the object will get larger in comparison to the marble pattern.

base is the base color of the surface.

strip is the color of the strips which is mixed in with the base color.

12.1.5 The granite shader

granite_shader() is very similar to marble_shader(). It also mixes two colors to create a

three dimensional texture, but the mixing is done in a different manner so the result should look

like granite.

Surface description:

typedef struct {
double ambient;
double specular;
double c3;
double scale;
Color col1;
Color col2;
Color opacity;

} Granite_desc;

ambient, specular, c3 and opacity have the same meaning as in basic_shader() (see Sec-

tion 12.1.1 [The basic shader], page 48).

scale describes how much the texture coordinates should be scaled before applying the texture.

When scaling get larger, the object will get larger in comparison to the granite pattern.

col1 and col2 are the two colors that are mixed.

Chapter 12: Shaders 52

12.1.6 The wood shader

wood_shader() creates a simulated wood texture on a surface. It uses two colors, one as the

base (often lighter) color of the wood and one as the color of the (often darker) rings in it. The

rings are put into the base color about the x-axis and are then distorted slightly. A similar pattern

is repeated at regular intervals to create an illusion of logs or boards.

Surface description:

typedef struct {
double ambient;
double specular;
double c3;
double scale;
Color base;
Color ring;
Color opacity;

} Wood_desc;

ambient, specular, c3 and opacity have the same meaning as in basic_shader() (see Sec-

tion 12.1.1 [The basic shader], page 48).

scale describes how much the texture coordinates should be scaled before applying the texture.

When scaling get larger, the object will get larger in comparison with the wood texture.

base and ring are the colors in the wood.

12.1.7 The bozo shader

bozo_shader() uses a random number, correlated with the three dimensional texture coordi-

nates, to chose a color from a fixed set. The user supplies an array of colors to choose from.

Surface description:

typedef struct {
Color colors[];
int no_of_cols;
double ambient;
double specular;
double c3;
double scale;
Color opacity;

} Bozo_desc;

Chapter 12: Shaders 53

colors are an array of colors with no_of_cols entries.

ambient, specular, c3 and opacity have the same meaning as in basic_shader() (see Sec-

tion 12.1.1 [The basic shader], page 48).

scale describes how much the texture coordinates should be scaled before applying the texture.

12.1.8 The mask shader

mask_shader() uses a user provided decision function to mask between two different shaders.

The decision function is passed all three texture coordinates and returns TRUE or FALSE.

The decision function should have the following interface:

bool
my_masker(mask, u, v, w)

my_mask_data *mask;
int u, v, w;

my_mask_data is a pointer to any data structure that the decision function needs. A common

use for mask_shader() is to use a bitmap to mask something onto a surface, in this case

my_mask_data could point to the bitmap itself.

u, v and w is the interpolated texture coordinates sent to the shader.

Surface description:

typedef struct {
Shader *t_shader;
void *t_surface;
Shader *f_shader;
void *f_surface;
void *mask_data;
bool (*masker)();

} Mask_desc;

The shader t_shader and the surface description t_surface is used to shade the surface

whenever the decision function returns TRUE.

The shader f_shader and the surface description f_surface is used to shade the surface

whenever the decision function returns FALSE.

mask_data points to any data structure the decision function need.

masker is a pointer to the decision function.

Chapter 12: Shaders 54

12.1.9 The bumpy shader

bumpy_shader() is a not really a shader. It is a function that changes the surface normal to

create the impression of a bumpy surface. The bumps are dependent on the three dimensional

texture coordinates. Any other shader can be used to do the final shading calculations.

Surface description:

typedef struct {
Shader *shader;
void *surface;
double scale;
bool bumpflag;
bool holeflag;

} Bumby_desc;

shader points to the shader that should be called to do the actual shading calculations.

surface is a pointer to the surface description that should be used in shader.

scale describes how much the texture coordinates should be scaled before applying the texture.

bumpflag and holeflag make it possible to flatten out half of the bumps. If only bumpflag

is TRUE only bumps "standing out" from the surface are visible. The rest of the surface will

be smooth. If, on the other hand, only holeflag is TRUE only bumps going "into" the surface

will be visible, thus giving the surface an eroded look. If both flags are true, the whole surface

will get a bumpy appearance, rather like an orange.

12.1.10 The planet shader

planet_shader() is a somewhat specialized shader that produces a texture that resembles a

planet surface. The planet is of the Tellus type with a mixture of oceans and continents. Some of

the surface is covered by semi-transparent clouds which enhances the effect greatly. On the other

hand, no polar caps are provided and this decreases the realism.

The texture is 3-dimensional, so it is possible to create cube planets or even planets with cut-out

parts that still have surfaces that resemble the earth surface. The texture is not scalable, and is

designed to be used with texture coordinates in the range [-1, 1], e.g. a unit sphere. The world

coordinates need not have the same order of magnitude of course .

Surface description: The planet shader uses the same surface description as basic_shader(), a

Surf_desc (see Section 12.1.1 [The basic shader], page 48), but the colors on the surface are hard

Chapter 12: Shaders 55

coded in the shader, so the color entry in the description is ignored.

12.2 Writing your own shaders

As mentioned earlier, SIPP calls a shading function for every point that is rendered. To be able

to perform all necessary calculations, the shader needs quite a lot of information of the state the

rendering is in. All information are sent to the shader as pointers to the data used internally in

SIPP. It is very important that this information is left unchanged. If any processing of the values

is needed, e.g. normalization of the surface normal, the result must be stored in local variables in

the shader.

The shading functions have the following interface:

void
my_shader(world, normal, texture, view_vec, lights, surface, color, opacity)

Vector *world;
Vector *normal;
Vector *texture;
Vector *view_vec;
Lightsource *lights;
void *surface;
Color *color;
Color *opacity;

world is the position in world coordinates of the point that is rendered.

normal is the surface normal in the point. Note: this vector is NOT normalized.

texture contains the interpolated values of the texture coordinates.

view_vec is a vector pointing from the rendered point at the viewpoint, i.e. the currently

active camera.

lights points to the linked list holding all lights.

surface is a pointer to a surface description, i.e. a data area holding information specific for

the rendered surface and the shader. The implementor of the shader decides what to put in

this area. It is the same pointer that was sent to surface_create() (See Chapter 6 [Creating

objects], page 21).

color points to an area where the shader should place the calculated color of the point.

opacity points to an area where the shader should place the calculated opacity of the point.

Since shaders are regular C functions they can be "cascaded". If one do not want to implement a

complete illumination calculation but want to do some special effect, like texture or bumpmapping,

Chapter 12: Shaders 56

the easiest way is to write a shader that only manipulates the surface color, normal or whatever,

and then calls another shader, like phong_shader(), to do the actual shading. This is the way

most of the shaders provided in SIPP work (see Section 12.1 [Provided shaders], page 48).

If one wants to implement a new shading model, things get slightly more complicated. Light-

sources and possible shadows must be considered. The heart of such a shader must contain a loop

over all lightsources, which are stored in a linked list. Inside this loop every lightsource is evaluated

to see how much light from it that reaches the shaded point. Here is an skeleton example of how

the code could look:

void
my_shader(world, normal, texture, view_vec, lights, surface, color, opacity)

Vector *world;
Vector *normal;
Vector *texture;
Vector *view_vec;
Lightsource *lights;
void *surface;
Color *color;
Color *opacity;

{
Lightsource *lp; /* Current lightsource */
Vector light_vec; /* Direction to current lightsource */
double light_factor; /* Fraction of light reaching us */
Color light_color; /* Resulting color from lightsource */

/*
* Other declarations and various initializations
* ...
* ...
*/

/*
* Loop over all lightsources
*/

for (lp = lights; lp != NULL; lp = lp->next)
{

/* Find out where the lightsource are and */
/* how much light from it that reaches us. */

light_factor = light_eval(lp, world, &light_vec);

/* Calculate contributed light from the lightsource */

light_color.red = light_factor * lp->color.red;
light_color.grn = light_factor * lp->color.grn;

Chapter 12: Shaders 57

light_color.blu = light_factor * lp->color.blu;

/*
* Calculate shading contribution from the
* lightsource using whatever model the shader
* implements.
* ...
* ...
*/

}

/*
* Store the final calculated color and opacity
* for the point where SIPP can find it and return.
*/

color->red =
color->grn =
color->blu =

opacity->red =
opacity->grn =
opacity->blu =

}

The function light_eval() and its parameters are described in more detail in the chapter on

lightsources (see Section 8.2 [Manipulating lights], page 35).

Chapter 13: Object primitives 58

13 Object primitives

As mentioned before, SIPP only renders surfaces built up of polygons. Sometimes this is too

low a level for the user to program in, so some higher level of abstraction is needed. In the SIPP

library a number of functions are provided that generate higher level objects from ordinary SIPP

surfaces. Most of them are simple geometric primitives, but some are more sophisticated such as

Bezier surfaces. If other types of objects are needed the user has to build them by him/herself (See

Chapter 6 [Creating objects], page 21).

Each object primitive which can be created in SIPP has an argument that describes what kind

of texture coordinates should be assigned to the surface of the object. This parameter can have

one of the following predefined values:

• NATURAL

This value tell SIPP to use a two dimensional mapping which is "natural" for this particular

object. It might be one of the other available mappings or it might be something unique for

the object. The description of the functions for creating the individual objects specifies how

this mapping is done.

• CYLINDRICAL

A two dimensional mapping. The coordinates are assigned as if the object were projected

on a cylinder surrounding the object and centered on the z-axis object. The coordinates are

mapped so that x goes from 0 to 1 around the base of the cylinder and y goes from 0 to 1 from

bottom to top on it.

• SPHERICAL

Same as CYLINDRICAL, but the object are projected on a sphere surrounding it instead.

• WORLD

A three dimensional mapping. The texture coordinates are the same three dimensional coor-

dinates as the world coordinates of the object at creation time.

The following objects are provided in the standard SIPP distribution. To use them, you must

put the line

#include <primitives.h>

into your C source file.

Chapter 13: Object primitives 59

13.1 The cube object

This function creates a cube centered about the origin.

The NATURAL texture mapping is similar to CYLINDRICAL but the x coordinate is not taken from

projection on a cylinder but is evenly distributed around the perimeter. An odd thing in all the

2D mappings (all except WORLD) for the cube is that the top face will have texture coordinates (0.0,

1.0) while the bottom will get (0.0, 0.0).

Object *
sipp_cube(size, surface, shader, texture)

double size;
void *surface;
Shader *shader;
int texture;

size

Size of the sides on the cube.

surface

Pointer to the surface description to use when shading the cube.

shader

Shader to use when shading the cube.

texture

Choice of texture mapping.

13.2 The block object

This function creates a rectangular block centered about the origin.

The NATURAL texture mapping is similar to CYLINDRICAL but the x coordinate is not taken from

projection on a cylinder but is evenly distributed around the perimeter. An odd thing in all the 2D

mappings (all except WORLD) for the block is that the top face will have texture coordinates (0.0,

1.0) while the bottom will get (0.0, 0.0).

Object *
sipp_block(xsize, ysize, zsize, surface, shader, texture)

double xsize, ysize, zsize;
void *surface;

Chapter 13: Object primitives 60

Shader *shader;
int texture;

xsize, ysize, zsize

Size of the sides on the block.

surface

Pointer to the surface description to use when shading the block.

shader

Shader to use when shading the block.

texture

Choice of texture mapping.

13.3 The prism object

This function creates a prism, i.e. a polygon in the x,y-plane which is extruded along the z-axis.

The NATURAL texture mapping is similar to CYLINDRICAL but the x coordinate is not taken from

projection on a cylinder but is evenly distributed around the perimeter. An odd thing in all the 2D

mappings (all except WORLD) for the prism is that the top face will have texture coordinates (0.0,

1.0) while the bottom will get (0.0, 0.0).

Object *
sipp_prism(num_points, points, zsize, surface, shader, texture)

int num_points;
Vector points[];
double zsize;
void *surface;
Shader *shader;
int texture;

num_points Number of points defining the prism.

points Array of num_points points defining the prism. The points should be given counter-

clockwise when looking at the prism from above (positive Z). Only the x and y members in

the vectors are significant, the z member is ignored.

zsize

Size of the prism along the z-axis.

surface

Pointer to the surface description to use when shading the prism.

Chapter 13: Object primitives 61

shader

Shader to use when shading the prism.

texture

Choice of texture mapping.

13.4 The sphere object

This function creates a sphere centered around the origin.

The NATURAL texture mapping is SPHERICAL.

Object *
sipp_sphere(radius, resol, surface, shader, texture)

double radius;
int resol;
void *surface;
Shader *shader;
int texture;

radius

The radius of the sphere.

resol

The sphere is tesselated into polygons. resol tells SIPP how many polygons there should be

around the "equator" of the sphere.

surface

Pointer to the surface description to use when shading the sphere.

shader

Shader to use when shading the sphere.

texture

Choice of texture mapping.

13.5 The ellipsoid object

This function creates an ellipsoid centered around the origin.

The NATURAL texture mapping is SPHERICAL.

Chapter 13: Object primitives 62

Object *
sipp_ellipsoid(xradius, yradius, zradius, resol, surface, shader, texture)

double xradius;
double yradius;
double zradius;
int resol;
void *surface;
Shader *shader;
int texture;

xradius, yradius, zradius

The radii of the ellipsoid in the principal axes directions.

resol

The ellipsoid is tesselated into polygons. resol tells SIPP how many polygons to generate

around the "equator" of the ellipsoid.

surface

Pointer to the surface description to use when shading the ellipsoid.

shader

Shader to use when shading the ellipsoid.

texture

Choice of texture mapping.

13.6 The cylinder object

This function creates a cylinder centered around the z-axis and the origin.

The NATURAL texture mapping is CYLINDRICAL.

Object *
sipp_cylinder(radius, resol, surface, shader, texture)

double radius;
int resol;
void *surface;
Shader *shader;
int texture;

radius

Radius of the cylinder.

Chapter 13: Object primitives 63

resol

The cylinder is tesselated into polygons, resol tells SIPP how many polygons there should be

around it.

surface

Pointer to the surface description to use when shading the cylinder.

shader

Shader to use when shading the cylinder.

texture

Choice of texture mapping.

13.7 The cone object

This function creates a, possibly truncated, cone centered around the z-axis and the origin.

The NATURAL texture mapping is CYLINDRICAL.

Object *
sipp_cone(topradius, bottomradius, resol, surface, shader, texture)

double topradius;
double bottomradius;
int resol;
void *surface;
Shader *shader;
int texture;

topradius, bottomradius

Radius of the cone at the top and bottom. If the cone should be pointed at one of the end,

specify 0 as radius.

resol

The cone is tesselated into polygons, resol tells SIPP how many polygons there should be

around it.

surface

Pointer to the surface description to use when shading the cone.

shader

Shader to use when shading the cone.

texture

Choice of texture mapping.

Chapter 13: Object primitives 64

13.8 The torus object

This function creates a torus centered around the z-axis and the origin.

The NATURAL texture mapping is a two dimensional mapping with the x coordinate going around

the "small" circle and the y coordinate going around the "large" circle.

Object *
sipp_torus(bigradius, smallradius, res1, res2, surface, shader, texture)

double bigradius;
double smallradius;
int res1;
int res2;
void *surface;
Shader *shader;
int texture;

bigradius, smallradius

Radius of the big and small circle defining the torus, the small circle is swept along the big

one to sweep out the torus.

res1, res2

The torus will be tesselated into res1 x res2 polygons. res1 is the number of vertices around

the big circle and rad2 is the number of vertices around the small one.

surface

Pointer to the surface description to use when shading the torus.

shader

Shader to use when shading the torus.

texture

Choice of texture mapping.

13.9 The Bezier patch

This function creates one or more Bezier patches. All created patches in a call will belong to

the same surface.

The texture coordinates are a bit special for the Bezier patches. CYLINDRICAL and SPHERICAL

coordinates are not applicable, if they are specified, SIPP will use NATURAL anyway. The NATURAL

Chapter 13: Object primitives 65

mapping is a two dimensional mapping using the surface parameters u and v, see figure below.

Note that these parameters range from 0 to 1 within each patch!

The patches are defined with a list of vertex coordinates and a set of 16 indices into that list

for each patch. The following figure show in which order the indices to vertices corresponding to

controlpoints for the patch should be given (and how u and v varies over the patch):

v=1 13____14____15____16
| | | |
| | | |
9____10____11____12
| | | |
| | | |
5_____6_____7_____8
| | | |
| | | |

v=0 1_____2_____3_____4

u=0 u=1

Object *
sipp_bezier_patch(num_vertex, vertex, num_patch, vx_index, resol,

surface, shader, texture)
int num_vertex;
Vector vertex[];
int num_patch;
int vx_index[];
int resol;
void *surface;
Shader *shader;
int texture;

num_vertex, vertex

The array vertex contains a list of num_vertex vertices.

num_patch

The number of patches that should be defined.

vx_index

A list of 16 * num_patch indices into vertex defining the control mesh of the patches. The

vertices for each patch should be specified in the order indicated in the figure above.

resol

Each patch will be tesselated into resol x resol polygons.

surface

Pointer to the surface description to use when shading the patches.

Chapter 13: Object primitives 66

shader

Shader to use when shading the patches.

texture

Choice of texture mapping (only NATURAL and WORLD is applicable.

13.10 The Bezier rotation curve

This function creates a surface by rotating one or more Bezier curves about the world z-axis.

The texture coordinates are a bit special for these surfaces. SPHERICAL and CYLINDRICAL map-

pings are not applicable, and NATURAL mapping will apply to the piece of surface created by each

Bezier curve separately. The NATURAL mapping uses the curve parameter u along each curve as x

coordinate and goes from 0 to 1 around the perimeter of the rotational surface on the other axis

The curves are defined with a list of vertex coordinates and a set of 4 indices into that list

for each curve. The following figure show in which order the indices to vertices corresponding to

controlpoints for the curve should be given.

4 u=1
z-axis \

^ \
| 3
| |
| |
| 2
| \
| \
| 1 u=0

Object *
sipp_bezier_rotcurve(num_vertex, vertex, num_curve, vx_index, resol,

surface, shader, texture)
int num_vertex;
Vector vertex[];
int num_curve;
int vx_index[];
int resol;
void *surface;
Shader *shader;
int texture;

Chapter 13: Object primitives 67

num_vertex, vertex

The array vertex contains a list of num_vertex vertices.

num_patch

The number of curves that should be defined.

vx_index

A list of 4 * num_patch indices into vertex defining the control polygon for the curves. The

vertices for each curve should be specified in the order indicated in the figure above.

resol

Each rotational surface will be tesselated into resol x 4*resol polygons, resol vertices along

the curve and 4*resol vertices around the perimeter.

surface

Pointer to the surface description to use when shading the surface.

shader

Shader to use when shading the surface.

texture

Choice of texture mapping (only NATURAL and WORLD is applicable.

13.11 The Bezier file

This functions reads descriptions of Bezier patches or Bezier curves in a predefined format from a

file and creates objects out of them. The file can contain a description of patches or curves, but not

both. If curves are defined, a surface will be created by rotating them about the world z-axis. The

file contain basically the same information as the parameters to a call to sipp_bezier_patch() or

sipp_bezier_rotcurve() and texture mapping is applied in the same way as in these functions

too.

The format of the file is very simple. Please note however, that the format differs slightly from

the way the data were specified in the previous two functions. This is for compatibility with older

versions. The differences are noted in detail at the spots marked Diff: below.

First in the file is a keyword defining the type of description in the file, bezier_curves: or

bezier_patches:. Then follows a description of the vertices (control points). First the word

vertices: followed by an integer number that tells how many vertices there are in the description,

then the word vertex_list: followed by the x, y and z coordinates for each vertex. The number

of vertices must be same as the number given above. This is, however, not checked for.

Chapter 13: Object primitives 68

If the file contains curves, the keyword curves: followed by the number of Bezier curves in the

file is on the next line. After this line, a line with the single keyword curve_list: follows. Lastly,

the Bezier curves themselves follow as numbers in groups of four by four.

Diff: Each number is an index into the vertex list with the first index having number 1.

Diff: The indices are given in the opposit order compared to sipp_bezier_rotcurve().

If the file contains patches, the format is the same with the following exceptions: The word

patches: is substituted for curves:, the word patch_list: is substituted for curve_list: and

the indices into the vertex list are grouped 16 by 16 instead of 4 by 4.

Diff: Each number is an index into the vertex list with the first index having number 1.

Comments can be inserted anywhere in a Bezier curve/patch description file by using the hash-

mark character, #. The comment lasts to the end of the line.

As an example of a Bezier file is here the body of a standard Newell teapot:

Bezier curves (rotational body) for teapot body.

bezier_curves:

vertices: 10
vertex_list:

3.500000E-01 0.000000E+00 5.625000E-01
3.343750E-01 0.000000E+00 5.953125E-01
3.593750E-01 0.000000E+00 5.953125E-01
3.750000E-01 0.000000E+00 5.625000E-01
4.375000E-01 0.000000E+00 4.312500E-01
5.000000E-01 0.000000E+00 3.000000E-01
5.000000E-01 0.000000E+00 1.875000E-01
5.000000E-01 0.000000E+00 7.500000E-02
3.750000E-01 0.000000E+00 1.875000E-02
3.750000E-01 0.000000E+00 0.000000E+00

curves: 3
curve_list:

1 2 3 4

4 5 6 7

7 8 9 10

#End of teapot bezier file

Object *

Chapter 13: Object primitives 69

sipp_bezier_file(file, resol, surface, shader, texture)
FILE *file;
int resol;
void *surface;
Shader *shader;
int texture;

file

An open filepointer to the file containing the descriptions.

resol

Each rotational surface will be tesselated into resol x 4*resol polygons, resol vertices along

the curve and 4*resol vertices around the perimeter.

Patches will be tesselated into resol x resol polygons.

surface

Pointer to the surface description to use when shading the surfaces.

shader

Shader to use when shading the surfaces.

texture

Choice of texture mapping (only NATURAL and WORLD is applicable.

Chapter 14: Future enhancements 70

14 Future enhancements

SIPP is constantly under development and we often run into new interesting things that we

would like to see included. Here is a small list of such things, some more realistic than others.

If you feel like adding to this list, please do! Check out the chapter on bugreports (Chapter 15

[Reporting bugs], page 71) for information on how to get in touch with us.

• More sophisticated anti-aliasing. This should not be so difficult with the new pixel buffer.

• User specified normals at vertices.

• Generalized interface to lightsources, much in the same way as the shader interface. This would

allow users to design "lightsource shaders"

• Better support for animation.

• Support for some more advanced object primitives, especially patches (Hermite, NURBS, etc.)

• Four channel output. Write out an alpha channel together with RGB. This is troublesome if

we want to stick with the ppm-format which does not support this. Possible solutions include

switching to Utah Raster format or writing the alpha channel in a separate pgm-file.

• Curved surface rendering (this would mean a name change I guess... :-))

• Use some sort of "virtual memory" by swapping things to disk. This would make it possible

to run SIPP on machines with braindamaged OS and/or hardware which doesn’t support real

VM.

• Front-end for reading RIB-files (Renderman Interface Bytestream). This might not be as

impossible as it may sound.

• Store objects in a "higher order" format, and tesselate to polygons at rendering time. This

could allow generalizing the object interface too so users could supply their own objects, with

tesselation functions. (Yes, I have been reading the Renderman specs...)

14.1 Contributions

We are grateful for all donations of code that we can receive. We are especially looking for new

primitive objects and interesting shaders.

Chapter 15: Reporting bugs 71

15 Reporting bugs

We have tried to test SIPP thoroughly, but since it is constantly being developed, there are

probably numerous bugs remaining, both in the source code and in the documentation. If you find

a bug in either, please send a bug report to either jonas-y@isy.liu.se or ingwa@isy.liu.se.

We will try to be as quick as possible in fixing the bugs and redistributing the fixes.

/Jonas Yngvesson & Inge Wallin

Concept index 72

Concept index

(Index is empty)

Function index 73

Function index

(Index is empty)

i

Table of Contents

GNU GENERAL PUBLIC LICENSE1

Preamble . 1

TERMS AND CONDITIONS . 2

Applying These Terms to Your New Programs . 5

1 What is SIPP? . 7

1.1 Authors of SIPP . 7

1.2 Where can I get SIPP? .8

2 Installation .9

2.1 Installation of the SIPP library .9

2.2 Installation of the on-line Info manual. 10

2.3 How to make typeset documentation from sipp.texinfo10

3 Getting started .12

3.1 Enhancing the scene . 13

4 Basic concepts .15

4.1 Polygons .15

4.2 Surfaces . 15

4.3 Objects . 15

4.4 Texture coordinates . 16

4.5 Shading functions . 16

4.6 Surface descriptions .16

4.7 Datatypes . 16

5 Initializations .19

6 Creating objects . 21

6.1 Creating polygons and surfaces .21

6.2 Building objects . 23

6.3 Duplicating objects . 24

7 Transformations .26

7.1 Geometric operations . 26

7.1.1 Vector operations . 26

ii

7.1.2 Matrix operations .27

7.2 Object transformations . 30

7.2.1 Applying transformations . 31

8 Lights . 33

8.1 Creating lights . 33

8.2 Manipulating lights . 35

9 Shadows . 37

10 Viewpoint and cameras . 38

11 Rendering . 41

11.1 Rendering to file . 41

11.2 Rendering to other devices . 43

11.3 Rendering to in-core images .44

11.3.1 The Sipp pixmap image data type . 45

11.3.2 The Sipp bitmap image data type .46

12 Shaders . 48

12.1 Provided shaders . 48

12.1.1 The basic shader . 48

12.1.2 The Phong shader . 49

12.1.3 The Strauss shader . 50

12.1.4 The marble shader .50

12.1.5 The granite shader . 51

12.1.6 The wood shader . 52

12.1.7 The bozo shader .52

12.1.8 The mask shader . 53

12.1.9 The bumpy shader .54

12.1.10 The planet shader . 54

12.2 Writing your own shaders . 55

13 Object primitives . 58

13.1 The cube object . 59

13.2 The block object .59

13.3 The prism object . 60

13.4 The sphere object .61

13.5 The ellipsoid object . 61

13.6 The cylinder object . 62

13.7 The cone object . 63

iii

13.8 The torus object . 64

13.9 The Bezier patch . 64

13.10 The Bezier rotation curve .66

13.11 The Bezier file .67

14 Future enhancements .70

14.1 Contributions .70

15 Reporting bugs . 71

Concept index .72

Function index . 73

