
hhh

Ag - An Attribute
Evaluator Generator

J. Grosch

hhh

hhh
GESELLSCHAFT FÜR MATHEMATIK
UND DATENVERARBEITUNG MBH

FORSCHUNGSSTELLE FÜR
PROGRAMMSTRUKTUREN
AN DER UNIVERSITÄT KARLSRUHE

hhh

Project

Compiler Generation

hhh

Ag - An Attribute Evaluator Generator

Josef Grosch

Aug. 3, 1992

hhh

Report No. 16

Copyright  1992 GMD

Gesellschaft für Mathematik und Datenverarbeitung mbH
Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1
D-7500 Karlsruhe

Ag 1

1. Introduction

Ag is an attribute evaluator generator [Gro89, Gro90b]. It processes ordered attribute gram-
mars (OAGs) [Kas80], well-defined attribute grammars (WAGs) as well as higher order attribute
grammars (HAGs) [VSK89]. It is oriented towards abstract syntax trees. Therefore the tree
structure is fully known. The terminals and nonterminals may have arbitrary many attributes
which can have any target language type. This includes tree-valued attributes. ag allows attri-
butes local to rules and offers an extension mechanism which provides single inheritance as well
as multiple inheritance for attributes and for attribute computations. It also allows the elimina-
tion of chain rules. The attribute computations are expressed in the target language and should
be written in a functional style. It is possible to call external functions of separately compiled
modules. Non-functional statements and side-effects are possible but require careful considera-
tion. The syntax of the specification language is designed to support compact, modular, and
readable documents. An attribute grammar can consist of several modules where the
context-free grammar is specified only once. There are shorthand notations for copy rules and
threaded attributes which allow the user to omit many trivial attribute computations. The gen-
erated evaluators are very efficient because they are directly coded using recursive procedures.
Attribute storage for OAGs is optimized by implementing attributes as local variables and pro-
cedure parameters whenever their lifetime is contained within one visit.

2. Features

The following list tries to give a complete overview of the features of ag.

- processes ordered attribute grammars (OAGs)

- processes well-defined attribute grammars (WAGs)

- processes higher order attribute grammars (HAGs)

- allows tree-valued attributes

- allows to use subtrees as attribute values

- allows to create parts of the tree during evaluation time

- allows read access to non-local attributes

- operates on abstract syntax

- cooperates with the generator for abstract syntax trees ast

- the tree structure is fully known

- terminals and nonterminals may have attributes

- allows attributes of any type

- differentiates input and output attributes

- allows to eliminate chain rules

- allows attributes local to rules

- offers single and multiple inheritance

- attributes are denoted by unique selector names instead of nonterminals with subscripts

- is largely independent of the target language

- attribute computations are expressed in the target language

- attribute computations are written in a functional style

- attribute computations can call external functions

- non-functional statements and side-effects are possible

Ag 2

- allows to write compact, modular, and readable specifications

- AGs can consist of several modules

- the context-free grammar is specified only once

- checks an AG for completeness of the attribute computations

- checks for unused attributes

- checks an AG for the classes WAG, SNC, DNC, OAG, LAG, and SAG

- generates efficient evaluators

- the evaluators are directly coded using recursive procedures

- the implementation of the trees is efficient

- optimizes attribute storage (for OAG evaluators)

- attributes may be implemented as local variables in procedures and passed as parameters

- generates evaluators in C and Modula-2

3. Specification

The input of ag is an attribute grammar. The notation used is an extension of a specification
for ast [Gro91a]. The ast formalism is used to describe the context-free grammar or the tree
structure and to declare the attributes and their types. The extension describes the attribute com-
putations. Such an extended specification is processed by both tools ast and ag. The first one
generates a tree module and the second one an evaluator module. Additionally, the specification
can be used to derive a scanner and parser which evaluate an S-attribution during parsing. This
feature is described in a separate document [Gro91b]. The complete syntax of ag specifications
is described in Appendix 1 using ast’s notation.

3.1. Context-Free Grammar

The context-free grammar on which an attribute grammar is based is described by an ast

specification. The primary item of such a specification is a node type which corresponds to a
nonterminal or a terminal as well as to grammar rules. The names of the node types correspond
to the names of grammar rules. The grammar symbols on the right-hand side of rules are
referred to as children in ast’s terminology.

3.2. Attribute Declarations

For every node type an arbitrary number of attributes of arbitrary types can be declared
again using ast’s notation. The extension mechanism (single inheritance) as well as multiple
inheritance are also available when using ag. The attribute properties input, output, synthesized,
inherited, threaded, ignore, and virtual are meaningful for ag (see next section). The properties
synthesized and inherited are often optional because they are determined automatically. The
concept of views also works in combination with ag. The global property ignore is effective for
attribute computations (see section 3.4), too. This allows for the activation of different sets of
attribute computations.

3.3. Properties

The description of children and attributes can be refined by the association of so-called pro-
perties. These properties are expressed by the keywords listed in Table 1.

Ag 3

Table 1: Properties for Children and Attributes

long form short formiiiiiiiiiiiiiiiiiiiiiiiii
INPUT IN
OUTPUT OUT
SYNTHESIZED SYN
INHERITED INH
THREAD
IGNORE
VIRTUAL

The properties have the following meanings: Input attributes (or children) receive a value at
node-creation time, whereas non-input attributes may receive their values at later times. Output

attributes are supposed to hold a value at the end of a node’s existence, whereas non-output attri-
butes may become undefined or unnecessary earlier. Synthesized and inherited describe the
kinds of attributes occurring in attribute grammars.

The property thread supports so-called threaded attributes: An attribute declaration [a
THREAD] is equivalent to the declaration of a pair of attributes with the suffixes In and Out:
[aIn INH] [aOut SYN]. In attribute computations, these attributes have to be accessed with their
full name including the suffixes. Additionally, special default rules are applied to threaded attri-
butes in order to yield the desired behaviour (see section 3.5.).

The property ignore instructs ag to disregard or omit an attribute or a child. It is useful in
connection with the concept of views [Gro91a] (see section 4.). Attributes with the property vir-

tual may depend on regular attributes or vice versa. However, virtual attributes neither take
storage nor are the computations specified for them executed. Attributes with this property may
be used to influence the evaluation order.

Properties are specified either locally or globally. Local properties are valid for one indivi-
dual child or attribute. They are listed after the type of this item. Example:

Expr = [Value SYN] [Env: tEnv INH] .

Global properties are valid for all children and attributes defined in one or several modules. They
are valid in addition to the local properties that might be specified. In order to describe global
properties, a module may contain several property clauses which are written in the following
form:

PROPERTY properties [FOR module_names]

The listed properties become valid for the given modules. If the FOR part is missing, the proper-
ties become valid for the module that contains the clause.

Example:

PROPERTY OUTPUT
PROPERTY SYN OUT FOR Eval2

3.4. Attribute Computations

For every node type, attribute computations (ACs) or actions may be specified. ACs can be
placed everywhere within the list of attribute and child declarations and are enclosed in braces
’{’ ’}’. ACs are written in the desired target language, using expressions, statements, or calls of
external functions of separately compiled abstract data types. However, ACs have to be func-
tional in order to allow ag the derivation of the dependencies among the attributes and the deter-
mination of an appropriate evaluation order. Side effects are possible as long as the user knows
what he/she is doing. The ACs are copied unchecked to the generated evaluator module. There-
fore syntax errors are detected by the compiler.

Ag 4

The ACs may contain attribute denotations. At a tree node, the attributes of this node and
the attributes of the children are accessible. Attributes of a node or of the left-hand side of a rule
are denoted just by their name. Attributes of a child or of the right-hand side of a rule are
denoted by the child’s selector name, a colon, and the attribute name. If an evaluator for WAGs
is generated then it is possible to have read-access to non-local attributes:

LhsAttribute = Ident
RhsAttribute = Ident : Ident
RemAttribute = REMOTE Expression => Node_type : Ident

In a "remote" access the expression has to evaluate to a pointer to a tree node whose type is a
subtype of ’Node_type’. The ’Ident’ describes the desired attribute of this tree node.

Example:

Expr = -> [Type] <
Binary = Lop: Expr Rop: Expr [Operator] .

> .

Type /* left-hand side (node) attribute */
Lop:Type /* right-hand side (child) attribute */
REMOTE addr => Expr:Type /* remote attribute access */

A name conflict occurs if the same identifier denotes an attribute as well as an other item. In this
case the escape character ’\’ should precede the non-attribute item as otherwise ag would treat it
as attribute. In general, the escape character ’\’ can be used within ACs to pass characters or
tokens unchanged to the generated program module which otherwise ag would interpret errone-
ously.

The special value SELF is a pointer referring to the current tree node. It is of interest when
higher order attribute grammars (HAGs) are used.

The following kinds of ACs are available (meta characters are ’[’, ’]’, and ’|’):

Assignment = Attribute := Expression ;
Copy = Attribute :- Attribute ;
AssignCode = Attributes := { Statement_sequence } ;
Check = Conditions ;
Conditions = Condition | Condition Conditions
Condition = [CHECK Expression] [=> Statement | => { Statement_sequence }]
After = Attributes AFTER Attributes ;
Before = Attributes BEFORE Attributes ;

The simplest form is the assignment of an arbitrary expression to an attribute. A copy rule
behaves exactly like an assignment, with the restriction that only an attribute may be assigned
instead of an arbitrary expression. The use of copy rules allows better optimizations in the gen-
erated attribute evaluator.

Example:

a := 1; /* constant */
a :- c:b; /* copy rule */
c:b :- a; /* copy rule */
a := c:a + 1; /* infix operator */
a := f (c:b, c:a, 2); /* function call */
a := f (c:b, g (c:a))) * 3; /* nested calls */

The AssignCode statement allows the computation of attributes using other statements than
assignments. In this case the attribute dependencies can not be derived from the statements,
automatically. The result attributes being computed have to be specified explicitly on the
left-hand side of the symbol ’:=’. The right-hand side is a block containing arbitrary statements.
This feature allows the description of conditional expressions and to compute several attributes

Ag 5

at one time. Note, that for the target language C the symbol ’:=’ is used in assignments and
before the block of the AssignCode statement. However, the block itself contains pure target
language code and therefore the symbol ’=’ is the correct assignment operator there.

Example in C:

a := { a = 1; };
a := { sum (b, c, a); };

a, b := { p (a, b, c, d); };
a, b := { p (a, c); q (b, d); };

a := { if (c:d) a = c:a; else a = c:b; }; /* or */
a := c:d ? c:a : c:b;

Example in Modula-2:

a := { a := 1; };
a := { sum (b, c, a); };

a, b := { p (a, b, c, d); };
a, b := { p (a, c); q (b, d); };

a := { IF c:d THEN a := c:a; ELSE a := c:b; END; };

The next form of ACs allows to check attribute values for certain conditions. It consists of
a semicolon terminated list of checks where every check is composed out of an expression part
and a statement part. If an expression evaluates to true then the next check in the list is con-
sidered. Otherwise, the statement part of this check is executed and the rest of the list is ignored.

Example:

CHECK a # 0 => WriteString ("a is zero");
CHECK c:b > 0 => { Error ("some error text"); INC (ErrorCount); };

CHECK Object != NULL => Error ("identifier not declared")
CHECK Object->Kind == kVar => Error ("variable required");

A missing expression part is equivalent to:

CHECK FALSE

This allows the execution of arbitrary statements during attribute evaluation. A missing state-
ment part is equivalent to an empty statement.

In some cases it is desirable to add artificial dependencies between attributes. This feature
can be used to turn AGs which are not OAG into OAG ones or to explicitly specify attribute
evaluation order: The attributes on the left-hand side of AFTER are evaluated after the ones on
the right-hand side or in other words they artificially depend on them. BEFORE works the other
way round. Alternatively, the pseudo function DEP (x, y) can be used to describe artificial
dependencies between attributes. It returns the value of its first argument x. This result depends
on both arguments x and y.

Example:

a AFTER c:b;
a, c:a BEFORE c:b, d;
a:b := DEP (c, d:e);

3.5. Default Computations

If ACs are missing and they are not inherited via the extension mechanism (see next sec-
tion), ag tries to insert copy rules as default ACs in the following ways:

- If an AC is missing for an right-hand side attribute c:a which is known to be inherited and
not threaded, and if the left-hand side has an attribute with the same name a: c:a :- a;

Ag 6

- If an AC is missing for an left-hand side attribute a which is known to be synthesized and
not threaded, and if there is a child c with an attribute named a: a :- c:a; If there are several
children with attributes named a then the right-most child is selected.

- If an AC is missing for a threaded attribute a then the attribute is threaded through all chil-
dren from left to right as shown in the example below. Or more precisely:

- If an AC is missing for a threaded attribute a and there is no child having a threaded attri-
bute with the same name a: aOut :- aIn;

- If an AC is missing for a threaded attribute a of a child c and there is no other child having
a threaded attribute named a to the left of it and there is a threaded attribute named a on the
left-hand side: c:aIn :- aIn;

- If an AC is missing for a threaded attribute a of a child c and there is a child b having a
threaded attribute named a to the left of it: c:aIn :- b:aOut;

- If an AC is missing for a threaded attribute a of the left-hand side and there is a child c hav-
ing a threaded attribute named a: aOut :- c:aOut; If there are several children with threaded
attributes named a then the right-most child is selected.

Example: automatically inserted default ACs

L = [a INH] L1: L L2: L . /* L1:a :- a; L2:a :- a; */

L = [a SYN] L1: L L2: L . /* a :- L2:a; */

L = [a THREAD] < /* aOut :- aIn; */
L0 = . /* aOut :- aIn; */
L1 = L1: L L2: L . /* L1:aIn :- aIn; L2:aIn :- L1:aOut; */

> . /* aOut :- L2:aOut; */

3.6. Extensions

The extension mechanism of ast fits together with the one of ag. First, like with ast,
derived node types possess the attributes of their base type. Second, a derived type inherits the
ACs of its base type. It may overwrite these by giving own ACs. ag tries to inherit ACs from a
base type before the rules for default computations (see section 3.5) are applied.

Example:

Expr = -> [Type] { Type := NoType; } <
Binary = Lop: Expr Rop: Expr [Operator] .
Unary = Expr [Operator] { Type := Integer; } .

> .

The node type Binary inherits the computation of the attribute Type from the node type Expr
whereas the node type Unary overwrites it.

3.7. Target Code

For both, the generated tree and evaluator modules, several sections containing target code

may be specified. Target code is code written in the target language which is copied unchecked
and unchanged to certain places in the generated modules. It has to be enclosed in braces ’{’ ’}’.
Balanced braces within the target code are allowed. Unbalanced braces have to be escaped by a
preceding ’\’ character. In general the escape character ’\’ escapes everything within target code.
Therefore especially the escape character itself has to be escaped. The keywords TREE and
EVAL each introduce a set of sections with the meaning given below.

These two keywords may optionally be followed by an identifier that specifies the name of
the generated moduile (compilation unit):

Ag 7

TREE [Name] ... EVAL [Name] ...

If several modules contain a name, the first one is chosen. If none of the modules contains a
name, the default names Tree and Eval are used.

The meaning of the target code sections is as follows:

IMPORT: Declarations to be included in the definition module at a place where IMPORT
statements are legal.

EXPORT: Declarations to be included in the definition module after the declaration of the
tree type tTREE in the tree module. Behaves like IMPORT in the evaluator
module.

GLOBAL: Declarations to be included in the implementation module at global level.

LOCAL: Declarations to be included in the procedures of the attribute evaluator.

BEGIN: Statements to initialize the declared data structures.

CLOSE: Statements to finalize the declared data structures.

3.8. Modules

The context-free grammar with attribute declarations and attribute computations may be
followed by an arbitrary number of modules. The modules allow the combination of parts of the
specification that logically belong together. A module consists of additional target code sections
and specifications of node types with attribute declarations and attribute computations. The
information given in the modules is merged in the following way: The target code sections are
concatenated. If a node type has already been declared, its attribute declarations and attribute
computations are added to the existing ones. If it has not been declared, it gets declared thus
introducing a new node type. See Appendix 2 for an elaborated example. Additionally, the
DECLARE section allows the definition of attributes for several node types at one time.

Example:

DECLARE
Decls Stats Expr = -> [Level] [Env: tEnv] .

Expr = -> [Type: tType] .

4. Several Attribute Evaluators

In some cases it might be desirable to use two or even more attribute evaluators that
operate on one tree structure. These evaluators run one after the other and every one computes a
disjoint subset of the attributes. There are two problems to solve:

First, a preceding evaluator may compute attributes which are used by a following evalua-
tor. These attributes should have the property output in the first case and input in the latter case.
Therefore we need means to switch the properties of attributes.

Second, the check for the completeness of an attribute grammar should be restricted to the
attributes processed by the current evaluator. Otherwise those attributes that are to be computed
by preceding evaluators are reported as not computed.

The solution is to generate all evaluators from one common attribute grammar and to use
the concept of views. Each generation step uses a distinguished view that selects those parts of
the complete information that are of interest and it adds properties such as input and output.

Example: Suppose, we want to run two attribute evaluators in sequence. In general, the
complete specification might have the following parts:

Ag 8

module contentsiii
G context-free grammar + for Eval 1 + Eval 2

input attributes
I1 intermediate attributes of Eval 1
O1 output attributes = of Eval 1

input attributes of Eval 2
I2 intermediate attributes of Eval 2
O2 output attributes of Eval 2
C1 attribute computations of Eval 1
C2 attribute computations of Eval 2

We distribute the parts on separate modules. The final program consists of three compilation
units:

Tree tree module
Eval1 first evaluator
Eval2 second evaluator

The three compilation units can be generated with the following UNIX commands:

echo SELECT G I1 O1 I2 O2 | cat - spec | ast -di
echo SELECT G I1 O1 C1 PROPERTY OUTPUT FOR O1 | cat - spec | ag -DI
echo SELECT G O1 C2 O2 PROPERTY INPUT FOR O1 | cat - spec | ag -DI

The select clause choses distinct subsets of all information that represent complete attribute
grammars. The property clause adds the global properties input and output to the module O1.
We assume the following information to be present in the modules:

G TREE Tree
C1 EVAL Eval1
C2 EVAL Eval2
O2 PROPERTY OUTPUT

This defines the names of the compilation units and the static global properties.

Note, if several attribute evaluators are used then currently the option for the optimization
of attribute storage does not work. Therefore all attributes have to be stored in the tree. The rea-
son is that the tree module has to be generated by a separate run of ast in order to yield a tree
module with all attributes. However, this independent run of ast does not know about the optim-
izer results of the two ag runs.

5. Output

The output of ag is an evaluator module consisting of a definition part and an implementa-
tion part. The module exports 3 procedures: EVAL is the generated evaluator procedure,
BeginEVAL and CloseEVAL are the procedures containing the BEGIN and CLOSE target code
sections. The definition parts for C and Modula-2 are given below. The strings EVAL and
TREE are replaced by the specified module names which default to Eval and Tree.

Definition part in C (header file):

extern void EVAL (tTREE t);
extern void BeginEVAL ();
extern void CloseEVAL ();

Ag 9

Definition part in Modula-2:

DEFINITION MODULE EVAL;

IMPORT TREE;

PROCEDURE EVAL (t: TREE.tTREE);
PROCEDURE BeginEVAL;
PROCEDURE CloseEVAL;

END EVAL.

6. Higher Order Attribute Grammars

ag is able to process higher order attribute grammars [VSK89] which are a reinvention of
generative attribute grammars [Den84]. These grammars are characterized by the following
features:

- Subtrees can be used as operands in expressions. They can appear on the right-hand side of
attribute computations or as parameters of function calls.

- Non-input children or attributes of type tTREE may receive a value of type tTREE during
attribute evaluation. This value can be an existing subtree or a dynamically created new
tree.

- The attributes in dynamically created subtrees are evaluated like all other attributes. Attri-
butes of this subtrees may depend on attributes of the already existing tree parts or vice
versa.

The following example taken from [VSK89] computes faculty numbers. Together with the
given main program it works as follows: the main program constructs an initial tree out of two
nodes of types R and P1. Then the generated evaluator is called. It dynamically extends the tree
by computing values for the non-input child F of the nodes P1 thus creating a tree of height n.
All nodes have two attributes called n and r. The attribute n is inherited and holds the values to
be multiplied. The attributes r is synthesized and computes the result. The node R serves as
interface: the value of its n attribute is read in, the value of its r attribute receives the final result
which is printed when attribute evaluation is finished. Note, that the node P2 inherits its compu-
tation for the attribute r from its base type F. The main program shows how an attribute evalua-
tor can be called several times in one run of a program.

Example in C:

RULE

R = F -> [n IN] [r OUT] { F:n := n; r := F:r; } .

F = -> [n] [r] { r := 1; } <

P1 = -> F { F := n <= 1 ? mP2 () \: mP1 ();
F:n := n - 1;
r := F:r * n; } .

P2 = .
>.

Ag 10

Main program:

include "Tree.h"
include "Eval.h"

main ()
{

tTree t; int i;

do {
scanf ("%d", & i);
t = mR (mP1 (), i);
Eval (t);
printf ("%d\n", t->R.r);

} while (t->R.n != 0);
return 0;

}

Example in Modula-2:

RULE

R = F -> [n IN] [r OUT] { F:n := n; r := F:r; } .

F = -> [n] [r] { r := 1; } <

P1 = -> F { F := {IF n <= 1
THEN F := Tree.mP2 ();
ELSE F := Tree.mP1 ();
END;};

F:n := n - 1;
r := F:r * n; } .

P2 = .
>.

Main program:

MODULE Main;

FROM StdIO IMPORT ReadI, WriteI, WriteNl, CloseIO;
FROM Tree IMPORT tTree, mR, mP1;
FROM Eval IMPORT Eval;

VAR t : tTree;

BEGIN
REPEAT

t := mR (mP1 (), ReadI ());
Eval (t);
WriteI (tˆ.R.r, 0); WriteNl;

UNTIL tˆ.R.n = 0;
CloseIO;

END Main.

7. Example

Appendix 2 contains an attribute grammar that specifies the semantic analysis for the exam-
ple language MiniLAX [GrK88]. A complete specification of the MiniLAX compiler and a more
detailed description of the attribute grammar can be found in [Gro90a] and [WGS89]. The attri-
bute grammar is based on the abstract syntax of the language. It is divided into modules where
each module describes the computation of one attribute. The first page of the specification
describes the abstract syntax and the intrinsic attributes whose values are supplied by the scanner
and parser. The attributes for semantic analysis are introduced in the individual modules. A
separate module named Conditions contains all context checks for MiniLAX. The reporting of

Ag 11

error messages is completely expressed in the target language. The source position is treated like
any other attribute. This allows the combination of error messages with precise source positions.

8. When Things Go Wrong

This section gives advice and points out debugging facilities when problems with the attri-
bute grammar or the generated evaluator occur. The information in this section is organized
according to the time the problem can arise.

8.1. During Specification

An unalterable precondition for the use of ag is that the user has a basic understanding of
attribute grammars. This knowledge should be available either through some kind of education
or from appropriate text-books. Some hints for writing attribute grammars may help to make the
generated evaluator work.

- Attribute computations should obey the functional stye, that means all arguments a compu-
tation depends upon have to be mentioned and no side-effects on global variables should
occur. In other words, global variables should neither be read nor written during an attri-
bute computation. Only the above rule allows the generator to determine a correct order for
the evaluation of all attributes.

- If the user decides to compute attributes using global variables, special care has to be taken.
The correct execution order should be validated for example by inspecting the visit
sequences. If there are mistakes in the execution order, then BEFORE and AFTER clauses
can be used to influence this order.

- Attributes with the property VIRTUAL may be used to influence the evaluation order, too.
Virtual attributes may depend on regular attributes or vice versa. However, virtual attri-
butes neither take storage nor are the computations specified for them executed.

8.2. During Generation

- Sometimes the extension or inheritance mechanism does not behave as expected. The
inherited attribute computations are printed with the option 2 and should be checked if
necessary.

- Sometimes the mechanism for default computations does not behave as expected. The copy
rules inserted by default can be printed with the option 1 and should be checked if neces-
sary.

- A serious problem occurs if cycles in the attribute dependencies are detected. This fact is
reported as error together with the concerned node type and the attribute instances
involved. The direct attribute dependencies specified in the attribute grammar and the clo-
sure operations applied by the tool result in a partial order between attribute instances. In
order to arrive at a total order necessary to construct visit sequences the OAG algorithm
adds additional dependencies between attributes. Sometimes these added dependencies
introduce a cycle. Often this dependencies come in pairs. The explicit reversion of one
dependency in a pair using an AFTER or BEFORE clause can solve this problem. This is
possible when the attribute grammar is l-ordered or partitioned, but the tool did a bad guess
in trying to produce a total order. However, if the attribute grammar is not l-ordered but
DNC or SNC for example, a larger reformulation of the attribute grammar may be neces-
sary.

The following school example illustrates this phenomenon:

Ag 12

Z = <
s = X Y { X:b := Y:d; Y:c := 1; Y:e := X:a; } .
t = X Y { X:b := Y:f; Y:c := X:a; Y:e := 2; } .

> .
X = -> [a] [b] { a := 3; } .
Y = -> [c] [d] [e] [f] { d := c; f := e; } .

It produces the following error messages:

2, 4: Error cycle in OAG

Cyclic Attributes and Artificially Introduced Dependencies

s Reachable Nonterminal Explicit HasChildren HasActions

X:a : X:b (1)
X:b : (0)
Y:d : Y:e (1)
Y:e : (0)

3, 4: Error cycle in OAG

Cyclic Attributes and Artificially Introduced Dependencies

t Reachable Nonterminal Explicit HasChildren HasActions

X:a : X:b (1)
X:b : (0)
Y:c : (0)
Y:f : Y:c (1)

1, 1: Information grammar is DNC

At both node types, s and t, there is cycle in the internal relation called OAG. The name of
the node type and its properties are printed. It is followed by a list of the attribute instances
on the cycle. For every attribute, the dependencies artificially introduced by the OAG algo-
rithm are printed after the character ’:’. The number in parentheses counts the artificial
dependencies. In this example, there are always pairs of artificial dependencies. If we
reverse the dependencies of X:a upon X:b by specifying that X:a should be computed
before X:b, the conflict is solved. This can be done with one BEFORE clause as follows:

Z = <
s = X Y { X:b := Y:d; Y:c := 1; Y:e := X:a; } .
t = X Y { X:b := Y:f; Y:c := X:a; Y:e := 2; } .

> .
X = -> [a] [b] { a := 3; a BEFORE b; } .
Y = -> [c] [d] [e] [f] { d := c; f := e; } .

- Sometimes the attribute dependencies occurring in cycles are not obvious. The dialog sys-

tem of ag allows the interactive inquiry of detailed information about the attribute grammar
and the problem. With options like V or P the visit sequences or the direct attribute depen-
dencies for all node types can be printed. The output may be quite voluminous for realistic
applications. The dialog system allows to obtain this information only for those node types
which are of interest. The dialog system is started when ag is rerun with the same input and
with the additional option J. The dialog system displays a menu and asks for commands
which consist mostly of one letter. All commands are terminated by the RETURN key.
Important commands are:

t <node type> or <node type>
Selects a certain node type as current node type.

m Prints a summary of all input belonging to the current node type. This includes all attribute
declarations and all attribute computations including inherited ones and copy rules added
automatically as default computations. In modular attribute grammars this information can

Ag 13

be spread over several modules. Only this command provides a complete view of all infor-
mation collected for a node type.

v Prints the visit sequence of a node type. For example the node type Index of the MiniLAX
example in Appendix 2 has the following visit sequence:

Index Reachable Nonterminal Explicit HasChildren HasAttributes HasActions

visit parent 1. time to compute
Env

compute Expr:Env
visit Expr 1. time to compute

Expr:Type
check condition 19
compute Adr:Env
visit Adr 1. time to compute

Adr:Type
compute type
compute IsLegal
check condition 18
compute Type
visit parent 2. time to compute

Level
CodeSizeIn
Co

compute Adr:Co
compute Expr:Level
compute Expr:Co
compute Adr:Level
compute Adr:CodeSizeIn
visit Adr 2. time to compute

Adr:CodeSizeOut
compute Expr:CodeSizeIn
visit Expr 2. time to compute

Expr:CodeSizeOut
compute CodeSizeOut
visit parent

The first line gives the name of the node type and its properties. In this case, Index is an
explicitly declared nonterminal which can be reached from the start symbol. It is a rule
having children, attributes, and attribute computations (actions). The first two lines of the
visit sequence might erroneously be interpreted as to do nothing and to return to the parent
node, immediately. However, the correct interpretation is, that the Index node is visited the
first time from the parent node and the inherited attribute Env has been computed in the
context of the parent node. Therefore the first operation carried out at an Index node is the
computation of the attribute Expr:Env. The rest of the visit sequence should be self expla-
natory.

f Finds and prints a path of dependencies between two attribute instances. These attribute
instances can be selected with the commands a and b. The printed path can be considered
as one path in the many possible trees. The path is printed as a sequence of lines. Every line
contains the name of a node type and two attribute instances. It represents a direct depen-
dency. The nodes of two neighbouring lines can be neighbours in the tree. The concatena-
tion of the direct dependencies represents the desired (usually non-direct) dependency
information.

Example: Suppose for MiniLAX (Appendix 2) we want know how in the rule Proc

the attribute CodeSizeOut depends upon the attribute Env. The following is a slightly
beautified listing showing how to answer this question.

Ag 14

ag -J minilax.ag

... the dialog system displays its menu here ...

? t Proc
? a CodeSizeOut
? b Stats:Env
? ?
node type: Proc, a: CodeSizeOut = 8, b: Stats:Env = 43

? f
Proc CodeSizeOut Stats:Env

Proc CodeSizeOut Next:CodeSizeOut
Decls CodeSizeOut CodeSizeIn
Proc Next:CodeSizeIn Decls:CodeSizeOut
NoDecl CodeSizeOut CodeSizeIn
Proc Decls:CodeSizeIn Stats:CodeSizeOut
Stat CodeSizeOut Next:CodeSizeOut
Assign CodeSizeOut Next:CodeSizeOut
Call CodeSizeOut Next:CodeSizeOut
Stats CodeSizeOut CodeSizeIn
Call Next:CodeSizeIn Actuals:CodeSizeOut
Actual CodeSizeOut Next:CodeSizeOut
Actuals CodeSizeOut CodeSizeIn
Actual Next:CodeSizeIn Expr:Co
Actual Expr:Co Formals
Call Actuals:Formals Object
Call Object Env
Assign Next:Env Env
Stat Next:Env Env
? x

C and c
In case of problems with cycles because of attribute dependencies introduced artificially,
those dependencies can be reported. The command C displays all dependencies of a node
type added artificially. The command c restricts this information to the attribute instances
on the cycle. The following dialog illustrates the analysis of the school example from
above:

ag -J dnc2

... the dialog system displays its menu here ...

? t s
? c
s Reachable Nonterminal Explicit HasChildren HasActions

X:a : X:b (1)
X:b : (0)
Y:d : Y:e (1)
Y:e : (0)

? C
s Reachable Nonterminal Explicit HasChildren HasActions

X : (0)
Y : (0)
X:a : X:b (1)
X:b : (0)
Y:c : (0)
Y:d : Y:e (1)
Y:e : (0)
Y:f : Y:c (1)

Ag 15

? x

8.3. During Compilation

Syntax errors in the attribute computations are not detected by the ag tool but by the fol-
lowing compilation. In case of Modula-2 as implementation language, the errors are reported
with respect to the line number of the generated evaluator module instead of the specification.
However, the generated evaluator contains comments referring to the line numbers in the
specification. In case of C as implementation language, the errors are reported with respect to the
line number of the specification. In general, the generated source code is relatively readable. It
consists of case statements where the case labels represent node types. The names of the attri-
butes are prefixed by access pathes. They allow the identification of individual attribute compu-
tations which are more or less unchanged.

In a few cases, ag can not distinguish conditional expressions (in C) or case labels (in C
and Modula-2) from attribute denotations.

Example:

a := b ? c : d;

a := { switch (b) { case k : a = 1; }; };

a := { CASE b OF k : a := 1; END; };

In these ACs, the sequences c:d and k:a would erroneously be interpreted as attribute denota-
tions. This mistake reappears later as syntax error in the generated evaluator. The problem is
caused by the ambiguous use of the character ’:’. Escaping the colon with the character ’\’ solves
the problem.

Example:

a := b ? c \: d;

a := { switch (b) { case k \: a = 1; }; };

a := { CASE b OF k \: a := 1; END; };

8.4. During Execution

When things go wrong, an attribute evaluator may either yield wrong results or crash with a
runtime error. In both cases, the trace facility of ag can offer significant help to locate the prob-
lem. When the evaluator is regenerated with the additional option T, it prints a trace during exe-
cution on standard output. Every action of the evaluator prints a line in one of the following for-
mats:

<node type> e <attribute instance> = <value>
<node type> c <number> = T or F
<node type> v <child name> <n>
<node type> v parent

Every action starts with the type of the current node.

The letter e (evaluate) indicates the computation of the mentioned attribute instance. The result-
ing attribute value is printed using the type specific write macro also used by the ASCII writer of
ast.

The letter c (check) indicates the execution of a CHECK statement which are internally dis-
tinguished by numbers. The value of the boolean expression is printed (T = TRUE, F =
FALSE).

The letter v (visit) indicates either the n-th visit to a child node or to the parent node.

Ag 16

The trace output is usually voluminous. It should be requested for small inputs, only. It
also increases the size of the evaluator by approximately a factor of two. In order to reduce the
output volume or the size of the evaluator module, the trace can be restricted to e (and c) or v
actions or to e actions without printing of the values. This is possible with the options X, Y, and
Z (see section 9). If the option U is used, the trace is restricted to a subset of all node types. The
names of the desired node types are read from a file named TraceTab. This is a text file contain-
ing a name of a node type in every line. The trace property is extended or inherited along the
extension hierarchy. Therefore it suffices to enumerate base types, only.

If the example in section 5 is processed with the command ’ag -cdimwDI0T hag’ the trace
produced for the input 2 is as follows:

R e F:n = 2
R v F 1
P1 e F = P1
F = NoTree

P1 e F:n = 1
P1 v F 1
P1 e F = P2
P1 e F:n = 0
P1 v F 1
P2 e r = 1
P2 v parent
P1 e r = 1
P1 v parent
P1 e r = 2
P1 v parent
R e r = 2
R v parent

9. Future Work

The following features should be added to ag:

- Optimization of attribute storage should be improved turning attributes into global vari-
ables.

- So-called demand attributes could be added, which are not stored in the tree but evaluated
every time they are needed.

- So-called circular attribute grammars should be supported.

- A mechanism for turning non-OAGs into OAG ones like the arrange orderly feature of the
GAG system [KHZ82] should be added.

- Integration of automatically determined evaluation sequences with user specified ones
would be desirable.

10. Usage

NAME

ag − generator for attribute evaluators

SYNOPSIS

ag [-options] [-l dir] [file]

DESCRIPTION

Ag generates a program module to evaluate an attribute computation specified by an attri-
bute grammar. A typical application is the semantic analysis phase in a compiler. The

Ag 17

input file contains an attribute grammar which describes the structure of all possible
trees, the attributes, and the attribute computations. Ag checks whether the attribute
grammar is ordered (OAG) and generates an evaluator consisting out of recursive pro-
cedures. If file is omitted the specification is read from standard input.

OPTIONS

A generate all, same as -DI (default)

D generate definition module

I generate implementation module

L generate a (lazy) evaluator for WAG (default OAG)

W suppress warnings

B allow missing attribute computations in extended node types

V print visit sequences

M print summary of all node types (rules) from source

P print dependency relations DP

S print dependency relations SNC

N print dependency relations DNC

O print dependency relations OAG

G print attribute instances sorted by declaration

E print attribute instances sorted by evaluation order

C print dependencies introduced for total order (completion)

T generate evaluator with trace output (all actions, T = XZ)

U trace only node types specified in file TraceTab

X trace attribute evaluation actions with values

Y trace attribute evaluation actions without values

Z trace visit actions

J start dialog system

Q browse internal data structure

0 optimize attribute storage

1 print inserted copy rules

2 print inherited attribute computation rules

3 print attribute storage assignment

6 generate # line directives

7 touch output files only if necessary

8 report storage consumption

9 generate code to measure stack size

c generate C code (default is Modula-2)

H print help information for evaluator module

ldir dir is the directory where ag finds its table files

FILES

Ag 18

if output is in C:

<module>.h specification of the generated evaluator module
<module>.c body of the generated evaluator module
yy<module>.w macro definitions

if output is in Modula-2:

<module>.md definition module of the generated evaluator module
<module>.mi implementation module of the generated evaluator module

SEE ALSO

J. Grosch: "Ast - A Generator for Abstract Syntax Trees", GMD Forschungsstelle an der
Universitaet Karlsruhe, Compiler Generation Report No. 15

J. Grosch: "Ag - An Attribute Evaluator Generator", GMD Forschungsstelle an der
Universitaet Karlsruhe, Compiler Generation Report No. 16

J. Grosch: "Object-Oriented Attribute Grammars", in: A. E. Harmanci, E. Gelenbe
(Eds.): Proceedings of the Fifth International Symposium on Computer and Information
Sciences (ISCIS V), Cappadocia, Nevsehir, Turkey, 807-816, Oct .1990

References

[Den84] P. Dencker, Generative attributierte Grammatiken, Dissertation, Universit
..
at

Karlsruhe, 1984.

[GrK88] J. Grosch and E. Klein,
..
Ubersetzerbau-Praktikum, Compiler Generation Report No.

9, GMD Forschungsstelle an der Universit
..
at Karlsruhe, June 1988.

[Gro89] J. Grosch, Ag - An Attribute Evaluator Generator, Compiler Generation Report No.
16, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Aug. 1989.

[Gro90a] J. Grosch, Specification of a Minilax Interpreter, Compiler Generation Report No.
22, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Mar. 1990.

[Gro90b] J. Grosch, Object-Oriented Attribute Grammars, in Proceedings of the Fifth

International Symposium on Computer and Information Sciences (ISCIS V), A. E.
Harmanci and E. Gelenbe (ed.), Cappadocia, Nevsehir, Turkey, Oct. 1990, 807-816.

[Gro91a] J. Grosch, Ast - A Generator for Abstract Syntax Trees, Compiler Generation
Report No. 15, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Sep. 1991.

[Gro91b] J. Grosch, Preprocessors, Compiler Generation Report No. 24, GMD
Forschungsstelle an der Universit

..
at Karlsruhe, Feb. 1991.

[Kas80] U. Kastens, Ordered Attribute Grammars, Acta Inf. 13, 3 (1980), 229-256.

[KHZ82] U. Kastens, B. Hutt and E. Zimmermann, GAG: A Practical Compiler Generator,
Springer Verlag, Heidelberg, 1982.

[VSK89] H. H. Vogt, S. D. Swierstra and M. F. Kuiper, Higher Order Attribute Grammars,
SIGPLAN Notices 24, 7 (July 1989), 131-145.

[WGS89] W. M. Waite, J. Grosch and F. W. Schr
..
oer, Three Compiler Specifications, GMD-

Studie Nr. 166, GMD Forschungsstelle an der Universit
..
at Karlsruhe, Aug. 1989.

Ag 19

Appendix 1: Syntax of the Specification Language

RULE

/* parser grammar */

Specification = <
= ScannerName ParserCodes TreeCodes EvalCodes PrecPart

PropPart DeclPart RulePart Modules .
= ’MODULE’ Name ScannerName ParserCodes TreeCodes EvalCodes PrecPart

PropPart DeclPart RulePart ’END’ Name Modules .
> .
ScannerName = <

= .
= ’SCANNER’ .
= ’SCANNER’ Name .

> .
ParserCodes = <

= .
= ’PARSER’ Codes .
= ’PARSER’ Name Codes .

> .
TreeCodes = <

= SubUnit .
= ’TREE’ SubUnit Codes .
= ’TREE’ Name SubUnit Codes .

> .
EvalCodes = <

= .
= ’EVAL’ Codes .
= ’EVAL’ Name Codes .

> .
Codes = <

= .
= Codes ’IMPORT’ tTargetCode .
= Codes ’EXPORT’ tTargetCode .
= Codes ’GLOBAL’ tTargetCode .
= Codes ’LOCAL’ tTargetCode .
= Codes ’BEGIN’ tTargetCode .
= Codes ’CLOSE’ tTargetCode .

> .
SubUnit = <

= .
= SubUnit ’SUBUNIT’ Name .
= SubUnit ’VIEW’ Name .

> .
PrecPart = <

= .
= ’PREC’ Precs .

> .
Precs = <

= .
= Precs ’LEFT’ Names .
= Precs ’RIGHT’ Names .
= Precs ’NONE’ Names .

> .
PropPart = Props .

Props = <
=
= Props ’PROPERTY’ Properties
= Props ’PROPERTY’ Properties ’FOR’ Names
= Props ’SELECT’ Names

> .
DeclPart = <

= .
= ’DECLARE’ Decls .

> .
Decls = <

= .
MoreNonterms = Decls Names ’=’ AttrDecls ’.’ .
MoreTerminals = Decls Names ’:’ AttrDecls ’.’ .

> .
Names = <

= .
= Names Name .

Ag 20

= Names ’,’ .
> .
RulePart = <

= .
= ’RULE’ Types .

> .
Types = <

= .
Nonterminal0 = Types BaseTypes ’=’ AttrDecls Prec Extensions ’.’ .
Nonterminal1 = Types Name BaseTypes ’=’ AttrDecls Prec Extensions ’.’ .
Terminal1 = Types Name BaseTypes ’:’ Code AttrDecls Prec Extensions ’.’ .
Terminal2 = Types Name tIdent BaseTypes ’:’ Code AttrDecls Prec Extensions ’.’ .
Abstract = Types Name BaseTypes ’:=’ AttrDecls Prec Extensions ’.’ .

> .
BaseTypes = <

= .
= ’<-’ Names .

> .
Code = <

= .
= tInteger .

> .
Prec = <

= .
= ’PREC’ Name .

> .
Extensions = <

= .
= ’<’ Types ’>’ .

> .
AttrDecls = <

= .
ChildSelct = AttrDecls Name ’:’ Name Properties .
ChildNoSelct = AttrDecls Name Properties .
AttrTyped = AttrDecls ’[’ Name ’:’ Name Properties ’]’ .
AttrInteger = AttrDecls ’[’ Name Properties ’]’ .
Block = AttrDecls ’{’ Actions ’}’ .

> .
Properties = <

= .
= Properties ’INPUT’ .
= Properties ’OUTPUT’ .
= Properties ’SYNTHESIZED’ .
= Properties ’INHERITED’ .
= Properties ’THREAD’ .
= Properties ’IGNORE’ .
= Properties ’VIRTUAL’ .
= Properties ’REVERSE’ .

> .
Actions = <

= .
Assign = Actions Attributes ’:=’ tExpression ’;’ .
Copy = Actions Attribute ’:-’ Attribute ’;’ .
AssignCode = Actions Attributes ’:=’ ’{’ tStatement_Sequence ’}’ ’;’ .
After = Actions Attributes ’AFTER’ Attributes ’;’ .
Before = Actions Attributes ’BEFORE’ Attributes ’;’ .
Condition = Actions Checks ’;’ .

> .
Attributes = <

= .
LhsAttribute = Attributes tIdent .
RhsAttribute = Attributes tIdent ’:’ tIdent .
RemAttribute = Attributes ’REMOTE’ tExpression ’=>’ tIdent ’:’ tIdent .

> .
Modules = <

= .
= Modules ’MODULE’ Name ParserCodes TreeCodes EvalCodes

PropPart DeclPart RulePart ’END’ Name .
> .
Checks = <

= Check .
= Check Checks .

> .
Check = <

= ’CHECK’ tExpression Statement .
= ’CHECK’ tExpression .

Ag 21

= Statement .
> .
Statement = <

= ’=>’ tStatement .
= ’=>’ ’{’ tStatement_Sequence ’}’ .

> .
Name = <

= tIdent .
= tString .

> .

/* lexical grammar */

tIdent : <
= Letter .
= tIdent Letter .
= tIdent Digit .
= tIdent ’_’ .

> .
tInteger : <

= Digit .
= tInteger Digit .

> .
tString : <

= "’" Characters "’" .
= ’"’ Characters ’"’ .

> .
tTargetCode : ’{’ Characters ’}’ .

Comment : ’/*’ Characters ’*/’ .

Characters : <
= .
= Characters Character .

> .

tExpression : . /* target language expression */

tStatement : . /* target language statement */

tStatement_Sequence: . /* target language statement sequence */

Ag 22

Appendix 2: Attribute Grammar for MiniLAX

MODULE AbstractSyntax /* -- */

TREE IMPORT {
FROM Idents IMPORT tIdent;
FROM Positions IMPORT tPosition;
}
GLOBAL {
FROM Idents IMPORT tIdent;
FROM Positions IMPORT tPosition;
}
EVAL Semantics

PROPERTY INPUT

RULE

MiniLAX = Proc .
Decls = <

NoDecl = .
Decl = Next: Decls REV [Ident: tIdent] [Pos: tPosition] <

Var = Type .
Proc = Formals Decls Stats .

>.
>.
Formals = <

NoFormal = .
Formal = Next: Formals REV [Ident: tIdent] [Pos: tPosition] Type .

>.
Type = <

Integer = .
Real = .
Boolean = .
Array = Type OUT [Lwb] [Upb] [Pos: tPosition] .
Ref = Type OUT .
NoType = .
ErrorType = .

>.
Stats = <

NoStat = .
Stat = Next: Stats REV <

Assign = Adr Expr [Pos: tPosition] .
Call = Actuals [Ident: tIdent] [Pos: tPosition] .
If = Expr Then: Stats Else: Stats .
While = Expr Stats .
Read = Adr .
Write = Expr .

>.
>.
Actuals = <

NoActual = [Pos: tPosition OUT] .
Actual = Next: Actuals REV Expr .

>.
Expr = [Pos: tPosition] <

Binary = Lop: Expr Rop: Expr [Operator: SHORTCARD] .
Unary = Expr [Operator: SHORTCARD] .
IntConst = [Value OUT] .
RealConst = [Value: REAL OUT] .
BoolConst = [Value: BOOLEAN OUT] .
Adr = <

Index = Adr Expr .
Ident = [Ident: tIdent] .

>.
>.
Coercions = <

NoCoercion = .
Coercion = Next: Coercions OUT <

Content = . /* fetch contents of location */
IntToReal = . /* convert integer value to real */

>.
>.

END AbstractSyntax

Ag 23

MODULE Output /* -- */

PROPERTY OUTPUT

DECLARE
Formals Decls = [Decls: tObjects THREAD] .
Call Ident = [Object: tObjects] [level: SHORTINT] .
If While = [Label1] [Label2] .
Read Write Binary = [TypeCode: SHORTCARD] .
Expr = Type Co: Coercions .
Index = type: Type .

END Output

MODULE Decls /* -- */

EVAL GLOBAL { FROM Definitions IMPORT mNoObject, mProc, mVar, mProc2, mVar2, Identify; }

DECLARE Formal Decl = [Object: tvoid OUT] .

RULE

MiniLAX = { Proc: DeclsIn := nNoObject ; } .
Decl = { Next: DeclsIn := nNoObject ;

DeclsOut:= Next: DeclsOut ;
Object := {} ; } .

Proc = { Next: DeclsIn := mProc (DeclsIn, Ident, Formals) ;
Object := {mProc2 (Next:DeclsIn, Level, CodeSizeIn,

Formals:DataSizeOut, Decls:DataSizeOut);};
Formals: DeclsIn := nNoObject ; } .

Var = { Next: DeclsIn := mVar (DeclsIn, Ident, Type) ;
Object := {mVar2 (Next:DeclsIn, Level, DataSizeIn);}; } .

Formal = { Next: DeclsIn := mVar (DeclsIn, Ident, Type) ;
Object := {mVar2 (Next:DeclsIn, Level, DataSizeIn);}; } .

Call = { Object := Identify (Ident, Env) ; } .
Ident = { Object := Identify (Ident, Env) ; } .

END Decls

MODULE Formals /* -- */

EVAL GLOBAL {
FROM Definitions IMPORT tObjects, GetFormals;
FROM Tree IMPORT Formal;
FROM Types IMPORT CheckParams;
}

DECLARE Actuals = [Formals: MyTree] .

RULE

Call = { Actuals: Formals := GetFormals (Object) ;
=> { CheckParams (Actuals, Actuals:Formals); } ; } .

Actual = { Next: Formals := {IF Formalsˆ.Kind = Formal
THEN Next:Formals := Formalsˆ.Formal.\Next
ELSE Next:Formals := Formals;
END;} ; } .

END Formals

MODULE Env /* -- */

EVAL GLOBAL { FROM Definitions IMPORT tEnv, NoEnv, mEnv; }

DECLARE Decls Stats Actuals Expr = [Env: tEnv INH] .

RULE

MiniLAX = { Proc: Env := NoEnv ; } .
Proc = { Stats: Env := mEnv (Decls:DeclsOut, Env) ;

Decls: Env := Stats: Env ; } .

END Env

MODULE Type /* -- */

Ag 24

EVAL GLOBAL {
FROM Definitions IMPORT GetType;
FROM Types IMPORT GetElementType, Reduce, ResultType;
FROM Tree IMPORT tTree, mBoolean, mInteger, mReal, mRef, mNoType;
}

RULE

Expr = { Type := nNoType ; } .
Binary = { Type := ResultType (Lop:Type, Rop:Type, Operator); } .
Unary = { Type := ResultType (Expr:Type, nNoType, Operator); } .
IntConst = { Type := nInteger ; } .
RealConst = { Type := nReal ; } .
BoolConst = { Type := nBoolean ; } .
Adr = { Type := nNoType ; } .
Index = { Type := mRef (GetElementType (type)) ;

type := Reduce (Adr:Type) ; } .
Ident = { Type := GetType (Object) ; } .

END Type

MODULE TypeCode /* -- */

EVAL GLOBAL { FROM ICodeInter IMPORT IntType, RealType, BoolType; }

DECLARE Read Write Binary = [type: tTree] .

Read = { type := Reduce (Adr:Type) ;
TypeCode := ICodeType [typeˆ.Kind] ; } .

Write = { type := Reduce (Expr:Type) ;
TypeCode := ICodeType [typeˆ.Kind] ; } .

Binary = { type := Reduce (Rop:Type) ;
TypeCode := ICodeType [typeˆ.Kind] ; } .

END TypeCode

MODULE Co /* -- */

EVAL GLOBAL { FROM Types IMPORT Reduce1, ReduceToRef, Coerce; }

RULE

Assign = { Adr : Co := Coerce (Adr :Type, ReduceToRef (Adr:Type));
Expr: Co := Coerce (Expr:Type, Reduce (Adr:Type)) ; } .

If = { Expr: Co := Coerce (Expr:Type, Reduce (Expr:Type)) ; } .
While = { Expr: Co := Coerce (Expr:Type, Reduce (Expr:Type)) ; } .
Read = { Adr : Co := Coerce (Adr :Type, ReduceToRef (Adr:Type)); } .
Write = { Expr: Co := Coerce (Expr:Type, Reduce (Expr:Type)) ; } .
Actual = { Expr: Co := {

IF Formalsˆ.Kind = NoFormal
THEN Expr:Co := NIL;
ELSE Expr:Co := Coerce (Expr:Type, Reduce1 (Formalsˆ.Formal.Type));
END; } ; } .

Binary = { Lop : Co := Coerce (Lop :Type, Reduce (Lop:Type)) ;
Rop : Co := Coerce (Rop :Type, Reduce (Rop:Type)) ; } .

Unary = { Expr: Co := Coerce (Expr:Type, Reduce (Expr:Type)) ; } .
Index = { Adr : Co := Coerce (Adr :Type, ReduceToRef (Adr:Type));

Expr: Co := Coerce (Expr:Type, Reduce (Expr:Type)) ; } .

END Co

MODULE DataSize /* -- */

EVAL GLOBAL { FROM Types IMPORT TypeSize; }

DECLARE Decls Formals = [DataSize THREAD] .

RULE

MiniLAX = { Proc: DataSizeIn := 0 ; } .
Decl = { DataSizeOut := Next: DataSizeOut ; } .
Proc = { Formals: DataSizeIn := 3 ; } .
Var = { Next: DataSizeIn := DataSizeIn + TypeSize (Reduce1 (Type)); } .
Formal = { Next: DataSizeIn := DataSizeIn + 1 ; } .

END DataSize

Ag 25

MODULE CodeSize /* -- */

DECLARE Decls Stats Actuals Expr = [CodeSize THREAD] .
Expr Coercions = [CoercionSize SYN] .

RUL

MiniLAX = { Proc: CodeSizeIn := 0 ; } .
Decl = { CodeSizeOut := Next: CodeSizeOut ; } .
Proc = { Stats:CodeSizeIn := CodeSizeIn +1 ; /* ENT */

Decls:CodeSizeIn := Stats:CodeSizeOut+1 ; /* RET */
Next: CodeSizeIn := Decls:CodeSizeOut ; } .

Stat = { CodeSizeOut := Next: CodeSizeOut ; } .
Assign = { Adr: CodeSizeIn := CodeSizeIn ;

Expr: CodeSizeIn := Adr: CodeSizeOut+Adr:CoercionSize;
Next: CodeSizeIn := Expr: CodeSizeOut+Expr:CoercionSize+1; /* STI */ } .

Call = { Actuals:CodeSizeIn:= CodeSizeIn+1 ; /* MST */
Next: CodeSizeIn := Actuals:CodeSizeOut+1; /* JSR */ } .

If = { Expr: CodeSizeIn := CodeSizeIn ;
Then: CodeSizeIn := Expr: CodeSizeOut+Expr:CoercionSize+1; /* FJP */
Else: CodeSizeIn := Then: CodeSizeOut+1 ; /* JMP */
Next: CodeSizeIn := Else: CodeSizeOut ; } .

While = { Stats:CodeSizeIn := CodeSizeIn +1 ; /* JMP */
Expr: CodeSizeIn := Stats:CodeSizeOut ;
Next: CodeSizeIn := Expr: CodeSizeOut+Expr:CoercionSize+2;

/* INV, FJP */ } .
Read = { Adr: CodeSizeIn := CodeSizeIn ;

Next: CodeSizeIn := Adr: CodeSizeOut+Adr:CoercionSize+2;
/* REA, STI */ } .

Write = { Expr: CodeSizeIn := CodeSizeIn ;
Next: CodeSizeIn := Expr: CodeSizeOut+Expr:CoercionSize+1; /* WRI */ } .

Actual = { Expr: CodeSizeIn := CodeSizeIn ;
Next: CodeSizeIn := Expr: CodeSizeOut+Expr:CoercionSize;

CodeSizeOut := Next: CodeSizeOut ; } .
Binary = { Rop: CodeSizeIn := Lop: CodeSizeOut+Lop:CoercionSize;

CodeSizeOut := Rop: CodeSizeOut+Rop:CoercionSize+1;
/* INV, MUL, ADD or LES */ } .

Unary = { CodeSizeOut := Expr: CodeSizeOut+Expr:CoercionSize+1; /* NOT */ } .
IntConst = { CodeSizeOut := CodeSizeIn+1 ; /* LDC */ } .
RealConst = { CodeSizeOut := CodeSizeIn+1 ; /* LDC */ } .
BoolConst = { CodeSizeOut := CodeSizeIn+1 ; /* LDC */ } .
Index = { Expr:CodeSizeIn := Adr: CodeSizeOut+Adr:CoercionSize;

CodeSizeOut := Expr: CodeSizeOut+Expr:CoercionSize+4;
/* CHK, LDC, SUB, IXA */ } .

Ident = { CodeSizeOut := CodeSizeIn+1 ; /* LDA */ } .

Expr = { CoercionSize:= Co: CoercionSize ; } .
Coercions = { CoercionSize:= 0 ; } .
Content = { CoercionSize:= Next: CoercionSize+1; /* LDI */ } .
IntToReal = { CoercionSize:= Next: CoercionSize+1; /* FLT */ } .

END CodeSize

MODULE Level /* -- */

DECLARE Decls Formals Stats Actuals Expr = [Level: SHORTINT INH] .

RULE

MiniLAX = { Proc: Level := 0 ; } .
Proc = { Formals: Level := Level + 1 ;

Decls: Level := Formals: Level ;
Stats: Level := Formals: Level ; } .

Call = { level := Level ; } .
Ident = { level := Level ; } .

END Level

MODULE Label /* -- */

RULE

If = { Label1 := Else: CodeSizeIn ;
Label2 := Else: CodeSizeOut ; } .

While = { Label1 := Stats: CodeSizeIn ;
Label2 := Expr: CodeSizeIn ; } .

Ag 26

END Label

MODULE Conditions /* -- */

EVAL GLOBAL {
FROM Definitions IMPORT IsDeclared, IsObjectKind, NoObject, Proc, Var;
FROM Tree IMPORT Integer, Boolean, Array, ErrorType, NoFormal, IsType, Error;
FROM Types IMPORT IsAssignmentCompatible, IsSimpleType;
}

RULE

Decl = { CHECK NOT IsDeclared (Ident, DeclsIn)
==> Error ("identifier already declared" , Pos) ; } .

Formal = { CHECK NOT IsDeclared (Ident, DeclsIn)
==> Error ("identifier already declared" , Pos) ;

CHECK IsSimpleType (Reduce1 (Type))
==> Error ("value parameter must have simple type", Pos) ; } .

Array = { CHECK Lwb <= Upb
==> Error ("lower bound exceeds upper bound" , Pos) ; } .

Assign = { CHECK IsAssignmentCompatible (Adr:Type, Expr:Type)
==> Error ("types not assignment compatible" , Pos) ; } .

Call = { CHECK Objectˆ.Kind # NoObject
==> Error ("identifier not declared" , Pos) ;

CHECK IsObjectKind (Object, Proc)
==> Error ("only procedures can be called" , Pos) ; } .

If = { CHECK IsType (Reduce (Expr:Type), Boolean)
==> Error ("boolean expression required" , Expr:Pos) ; } .

While = { CHECK IsType (Reduce (Expr:Type), Boolean)
==> Error ("boolean expression required" , Expr:Pos) ; } .

Read = { CHECK IsSimpleType (Reduce (Adr:Type))
==> Error ("simple type operand required" , Adr:Pos) ; } .

Write = { CHECK IsSimpleType (Reduce (Expr:Type))
==> Error ("simple type operand required" , Expr:Pos) ; } .

Binary = { CHECK Typeˆ.Kind # ErrorType
==> Error ("operand types incompatible" , Pos) ; } .

Unary = { CHECK Typeˆ.Kind # ErrorType
==> Error ("operand types incompatible" , Pos) ; } .

Index = { CHECK IsType (Reduce (Adr:Type), Array)
==> Error ("only arrays can be indexed" , Adr:Pos) ;

CHECK IsType (Reduce (Expr:Type), Integer)
==> Error ("integer expression required" , Expr:Pos) ; } .

Ident = { CHECK Objectˆ.Kind # NoObject
==> Error ("identifier not declared" , Pos) ;

CHECK IsObjectKind (Object, Var)
==> Error ("variable required" , Pos) ; } .

END Conditions

MODULE TypeDecls /* -- */

TREE IMPORT {
FROM SYSTEM IMPORT ADDRESS;
FROM Definitions IMPORT tObjects, tEnv;
IMPORT Errors, Scanner;

PROCEDURE Error (Text: ARRAY OF CHAR; Position: Scanner.tPosition);

TYPE tvoid = RECORD END;

CONST
Plus = 1;
Times = 2;
Less = 3;
Not = 4;

}

EXPORT { TYPE MyTree = tTree; }

GLOBAL {
FROM Strings IMPORT tString, ArrayToString;
IMPORT Errors, Scanner;

PROCEDURE Error (Text: ARRAY OF CHAR; Position: tPosition);
BEGIN

Errors.Message (Text, Errors.Error, Position);

Ag 27

END Error;
}

EVAL GLOBAL {
TYPE MyTree = Tree.tTree;

VAR nNoObject : tObjects;
VAR nInteger, nReal, nBoolean, nNoType : tTree;
VAR ICodeType : ARRAY [Integer .. Boolean] OF [IntType .. BoolType];
}

BEGIN {
nNoObject := mNoObject ();
nInteger := mInteger ();
nReal := mReal ();
nBoolean := mBoolean ();
nNoType := mNoType ();

ICodeType [Tree.Integer] := IntType ;
ICodeType [Tree.Real] := RealType ;
ICodeType [Tree.Boolean] := BoolType ;

}

END TypeDecls

Ag 1

Contents

1. Introduction .. 1

2. Features .. 1

3. Specification ... 2

3.1. Context-Free Grammar .. 2

3.2. Attribute Declarations .. 2

3.3. Properties ... 2

3.4. Attribute Computations .. 3

3.5. Default Computations .. 5

3.6. Extensions .. 6

3.7. Target Code .. 6

3.8. Modules .. 7

4. Several Attribute Evaluators .. 7

5. Output .. 8

6. Higher Order Attribute Grammars ... 9

7. Example ... 10

8. When Things Go Wrong .. 11

8.1. During Specification .. 11

8.2. During Generation ... 11

8.3. During Compilation ... 15

8.4. During Execution ... 15

9. Future Work ... 16

10. Usage .. 16

References .. 18

Appendix 1: Syntax of the Specification Language .. 19

Appendix 2: Attribute Grammar for MiniLAX ... 22

